
Mfpic: Pictures in TEX
with Metafont and MetaPost�

Daniel H. Luecking� Thomas E. Leathrum Geoffrey Tobin

2012/03/12

Contents

1 Introduction 1
1.1 Why? . 1
1.2 Who? . 1
1.3 What? . 1
1.4 How? . 2

2 Options. 5
2.1 metapost, metafont, \usemetapost, \usemetafont. 5
2.2 mplabels, \usemplabels, \nomplabels. 5
2.3 overlaylabels, \overlaylabels, \nooverlaylabels. 6
2.4 truebbox, \usetruebbox, \notruebbox. 6
2.5 clip, \clipmfpic, \noclipmfpic. 6
2.6 centeredcaptions, \usecenteredcaptions, \nocenteredcaptions. 7
2.7 raggedcaptions, \useraggedcaptions, \noraggedcaptions. 7
2.8 debug, \mfpicdebugtrue, \mfpicdebugfalse. 7
2.9 clearsymbols, \clearsymbols, \noclearsymbols. 7
2.10 draft, final, nowrite, \mfpicdraft, \mfpicfinal, \mfpicnowrite. 7
2.11 mfpreadlog, \mfpreadlog. 8
2.12 Scoping Rules. 8

3 Metafont and Metapost Data Types. 9
3.1 Numerics and pairs. 9
3.2 Colors. 9
3.3 Paths, pictures and booleans. 10

4 The Macros. 11
4.1 Files and Environments. 11
4.2 Common objects. 13

4.2.1 Points, lines, and rectangles . 14
4.2.2 A word about list arguments . 16
4.2.3 Axes, axis marks, and grids . 16
4.2.4 Circles, arcs and ellipses . 20
4.2.5 Curves . 23
4.2.6 Bar charts and pie charts . 25
4.2.7 Braces . 26

Mfpic version: 1.07.
�Copywrite 2002–2012, Daniel H. Luecking
�luecking@uark.edu: Communications regarding mfpic should be sent to this author. Any first-person

references in this manual refer to Dr. Luecking.

i

Contents ii

4.3 Colors in mfpic. 27
4.3.1 Metapost color functions . 27
4.3.2 Establishing mfpic default colors . 28
4.3.3 Defining a color name . 29
4.3.4 Metafont colors . 30

4.4 Modifying the figures. 30
4.4.1 Closure of paths . 31
4.4.2 Reversal, connection and other path modifications 32
4.4.3 Arrows . 33

4.5 Rendering figures. 35
4.5.1 Drawing . 36
4.5.2 Shading, filling, erasing, clipping, hatching 38
4.5.3 Changing the default rendering . 40
4.5.4 Examples . 40

4.6 Functions and Plotting. 41
4.6.1 Defining functions . 41
4.6.2 Plotting functions . 42
4.6.3 Plotting external data files . 45

4.7 Labels and Captions. 49
4.7.1 Setting text . 49
4.7.2 Curves surrounding text . 53

4.8 Saving and Reusing an mfpic Picture. 54
4.9 Picture Frames. 55
4.10 Affine Transforms. 55

4.10.1 Transforming the metafont coordinate system 56
4.10.2 Transforming paths . 56

4.11 Parameters. 60
4.12 For Advanced Users. 63

4.12.1 Splines . 63
4.12.2 Béziers . 64
4.12.3 Raw metafont code . 65
4.12.4 Creating metafont variables . 66
4.12.5 Miscelaneous pair expressions . 69
4.12.6 Manipulating metafont picture variables 70
4.12.7 Metafont loops . 71
4.12.8 Miscellaneous . 74

5 Appendices 79
5.1 Acknowledgements. 79
5.2 Changes History. 79
5.3 Summary of Options. 79
5.4 Plotting Styles for \plotdata. 80
5.5 Special Considerations When Using Metafont. 81
5.6 Special Considerations When Using Metapost. 81

5.6.1 Required support . 81
5.6.2 Metapost is not metafont . 82
5.6.3 Graphic inclusion . 83

5.7 Mfpic and the Rest of the World. 84

Contents iii

5.7.1 The literature . 84
5.7.2 Other programs . 85

5.8 Index of commands, options and parameters. 87
5.9 List of commands by type. 92

5.9.1 Figures . 92
5.9.2 Renderings . 92
5.9.3 Arrows . 92
5.9.4 Modifying figures . 92
5.9.5 Lengths . 93
5.9.6 Coordinate transformation . 93
5.9.7 Symbols, axes, grids, marks . 93
5.9.8 Symbol names . 93
5.9.9 Setting options . 94
5.9.10 Setting values . 94
5.9.11 Setting colors . 94
5.9.12 Defining arrays . 94
5.9.13 Changing behavior . 95
5.9.14 Files and environments . 95
5.9.15 Text . 95
5.9.16 Miscellaneous . 95

1 Introduction
1.1 Why?
Tom got the idea for mfpic1 mostly out of a feeling of frustration. Different output mech-
anisms for printing or viewing TEX DVI files each have their own ways to include pictures.
More often than not, there are provisions for including graphic objects into a DVI file using
TEX \special’s. However, this technique seemed far from TEX’s ideal of device indepen-
dence because different TEX output drivers recognize different \special’s, and handle them
in different ways.

LATEX’s picture environment has a hopelessly limited supply of available objects to
draw—if you want to draw a graph of a polynomial curve, you’re out of luck.

There was, of course, PICTEX, which was wonderfully flexible and general, but its most
obvious feature was its speed—or rather lack of it. Processing a single picture in PICTEX
(in those days) could often take several seconds.

It occurred to Tom that it might be possible to take advantage of the fact that metafont
is designed for drawing things. The result of pursuing this idea was mfpic, a set of macros
for TEX and metafont which incorporate metafont-drawn pictures into a TEX file.

With the creation of metapost by John Hobby, and the almost universal availability
of free PostScript interpreters like Ghostscript, some mfpic users wanted to run their
mfpic output through metapost, to produce PostScript pictures. Moreover, users wanted
to be able to use pdfTEX, which did not get along well with PK fonts, but was quite happy
with metapost pictures. So metapost support was added to mfpic. This got us a little bit
away from device independence, but many users were not much concerned with that: they
just wanted a convenient way to have text and pictures described in the same document file.

With the extra capabilities of PostScript (e.g., color) and the corresponding abilities
of metapost, there was a demand for some mfpic interface to access them. Consequently,
switches (options) have been added to access some of them. When these are used, output
files may no longer be compatible with metafont.

1.2 Who?
The original mfpic (and still the core of the current version) was written primarily by
Tom Leathrum during the late (northern hemisphere) spring and summer of 1992, while at
Dartmouth College. Different versions were being written and tested for nearly two years
after that, during which time Tom finished his Ph.D. and took a job at Berry College, in
Rome, GA. Between fall of 1992 and fall of 1993, much of the development was carried out
by others. Those who helped most in this process are credited in the Acknowledgements.

Somewhere in the mid 1990’s the development passed to Geoffrey Tobin who kept things
going for several years.

The addition of metapost support was carried out by Dan Luecking around 1997–99.
He is also responsible for all other additions and changes since then, with help from Geoffrey
and a few others mentioned in the Acknowledgements.

1.3 What?
See the README file for a list of files in the distribution and a brief explanation of each. Only
three are actually needed for full access to mfpic’s capabilities: mfpic.dtx, mfpic.ins and
grafbase.dtx. Running LATEX on mfpic.ins creates the only required files:

1‘Mfpic’ is pronounced by spelling the first two letters: ‘em-eff-pick’.

1

1 How? 2

mfpic.tex and mfpic.sty, the latter required only for LATEX.
grafbase.mf, required only if metafont will be processing figures.
grafbase.mp, dvipsnam.mp and mfpicdef.tex, needed only if metapost will be the
processor.

The README file also gives some guidence on the proper location for the installation of
these files.

1.4 How?
Some guidance on writing files that contain mfpic figures can be found in the accompanying
file mfpguide.pdf. If you use mfpic to produce metapost figures the process is straight-
forward: run TEX (or LATEX), then metapost, then TEX again. If there are no errors, then
dvips or other DVI-to-PS converter can be run to produce viewable/printable output. You
can also run dvipdfm(x) to obtain PDF output, or even use pdfTEX instead of TEX (or
pdfLATEX instead of LATEX) to get PDF output directly.

Here is an example of the process: for the sample file pictures.tex, first run TEX on it
(or run LATEX on lapictures.tex). You may see a message from mfpic that there is no file
pics.1, but TEX will continue processing the file anyway. When TEX is finished, you will
now have a file called pics.mp. This is the metapost file containing the descriptions of the
pictures for pictures.tex. You need to run metapost on pics.mp (Read your metapost
manual to see how to do this.2) Typically, you just type

mpost pics.mp

This usually produces files named3 pics.1, pics.2, etc., the number of files depending
on the version of pictures.tex. You then reprocess pictures.tex with TEX to produce a
DVI file. This file can then be processed with dvips (for example) to produce PostScript
output which can be printed or viewed. One can also process the DVI with dvipdfm(x) to
produce a PDF file.

If pdfTEX is used instead of TEX on the second run, you should be able to view the
resulting PDF file immediately, without any further processing.

If instead you use mfpic to produce metafont figures, things are a little less straightfor-
ward. The process is TEX, then metafont, then gftopk, then TEX again. After this, TEX’s
DVI output ought to be viewable and printable by most DVI viewers or printer drivers. For
a few TEX systems there may be some prior setup needed. One needs to convince TEX and
its output drivers to find metafont’s output files. You should do whatever is necessary
(perhaps nothing!) to insure that TEX looks in the current directory for .tfm files, and that
your DVI drivers look in the current directory for .pk files. There may also be some setup
needed to ensure that the .pk files are created at a resolution that matches that of your
printer and of your DVI viewer. See the discussion in mfpguide.pdf.

If you want to test this process on the supplied sample files, edit pictures.tex removing
the \usemetapost command (or edit lapictures.tex, removing themetapost option). After
that, run TEX on pictures.tex (or run LATEX on lapictures.tex). You may see a message
from mfpic that there is no file pics.tfm, but TEX will continue processing the file. When
TEX is finished, you will now have a file called pics.mf. This is the metafont file containing
the descriptions of the pictures for pictures.tex. You need to run metafont on pics.mf,

2The document Some experiences on running Metafont and MetaPost, by Peter Wilson, can be useful
for beginners. Fetch CTAN/info/metafp.pdf. ‘CTAN’ means the Comprehensive TEX Archive Network. You
can find the mirror nearest you by pointing your browser at http://www.ctan.org/ .

3Recent metapost allows one to change the default names of the output files. Current mfpic provides
an interface to that capability: see \setfilenametemplate on page 77.

http://www.ctan.org/

1 How? 3

with mode:=localfont set up. (Read your metafont manual to see how to do this.4)
Typically, you just type

mf pics.mf

or, to use a particular printer mode such as ljfour, possibly something like

mf ’\mode:=ljfour; input pics.mf’

This produces a pics.tfm file and a GF file with a name something like pics.600gf. The
actual number may be different and the extension may get truncated on some file systems.
Then you run gftopk on the GF file to produce a PK font file. (Read your gftopk manual
on how to do this.) Typically, you just run

gftopk pics.600gf

(or possibly “gftopk pics.600gf pics.600pk” or “gftopk pics.600gf pics.pk”).
Now that you have the font (the .pk file) and font metric file (the .tfm) generated by

metafont, reprocess the file pictures.tex with TEX. The resulting DVI file should now
be complete, and you should be able to print and view it at your computer (assuming your
viewer and print driver have been set up to be able to find the PK font generated from
pics.mf).

It is not advisable to rely on automatic font generation to create the .tfm and .pk files.
(Different systems do this in different ways, so here I will try to give a generic explanation.)
The reason: later editing of a figure will require new files to be built, and most automatic
systems will not remake the files once they have been created. This is not so much a problem
with the .tfm, because mfpic never tries to load the font if the .tfm is absent and therefore
no automatic .tfm-making should ever be triggered. However, if you forget to run gftopk,
then try to view your resulting file, you may have to search your system and delete some
automatically generated .pk file (they can turn up in far-away places) before you can see any
later changes. It might be wise to write a shell script (batch file) that runs both metafont
and gftopk. It should also do some error checking and delete the .tfm if the .pk file is not
produced. That way, if anything goes wrong, the .dvi will not contain the font (mfpic will
draw a rectangle and the figure number in place of the figure).

These processing steps—processing with TEX, processing with metafont/gftopk or
metapost, and reprocessing with TEX—may not always be necessary. In particular, if you
change the TEX document without making any changes at all to the pictures, then there
will be no need to repeat the metafont or metapost steps.

There are also somewhat subtle circumstance under which you can skip the second TEX
step after editing a figure if the file has already gone through the above process. Delineating
the exact cirumstances is rather involved, so it is recommended that you always repeat the
TEX step if you have made changes that affect any figure.

What makes mfpic work? When you run TEX on the file pictures.tex, the mfpic
macros issue TEX \write commands, writing metafont (or metapost) commands to a
file pics.mf (or pics.mp). The user should never have to read or change the file pics.mf
directly—the mfpic macros take care of it.

The enterprising user can determine by examining the mfpic source and the resulting
.mf or .mp file, that mfpic drawing macros translate almost directly into similar metafont/
metapost commands, defined in one of the files grafbase.mf or grafbase.mp. The labels
and captions, however, are placed on the graph by TEX using box placement techniques

4If you are new to running metafont, the document Metafont for Beginners, by Geoffrey Tobin, is a
good start. Fetch CTAN/info/metafont-for-beginners.tex.

1 How? 4

similar to those used in LATEX’s picture environment (except when option mplabels is in
effect, in which case the labels are written to the .mp file and handled by metapost).

Note: In this manual, when describing mfpic operations, we will often refer to “meta-
font” when we really mean “metafont or metapost”. This will especially be the case
whenever we need to refer to commands in the two languages which are substantially the
same, but occasionally we will even talk about “running metafont” when we mean running
one or the other program mf or mpost to process the figures. If we need to discriminate
between the two processors, (for example when they have different behavior) we will make
the difference explicit.

A similar shorthand is used when referring to “TEX”. It should not be taken to mean
“plain TEX”, but rather whatever version of TEX is used to process the source file: plain
TEX, LATEX, pdfTEX, or pdfLATEX. Also AMS-TEX, eplain and some other variants. When
last tried, mfpic didn’t work with ConTEXt.

2 Options.
There are several options to the mfpic package. These options can be turned on with
certain provided commands, but under LATEX they can also be used in the standard LATEX
\usepackage optional argument. Some options can be switched off and on throughout the
document. Here we merely list them and provide a general description of their purpose. More
details may be found later in the discussion of the features affected. The headings below
give the option name, the alternative macro and, if available, the command for turning off
the option. Any option in the \usepackage command not among those given below will be
passed on to the graphics package, provided the metapost option has been used.

If the file mfpic.cfg exists, it will be input just before all options are processed. You
can create such a file containing an \ExecuteOptions command to execute any options you
would like to have as default. Actual options to \usepackage will override these defaults,
of course. And so will any of the commands below.

Finally, if a file named mfpic.usr can be found, it will be input at the end of the loading
of mfpic. The user can create such a file containing any of the commands of this section
that he would like to have as default, plus any other TEX code.

2.1 metapost, metafont, \usemetapost, \usemetafont.
The option metapost or the command \usemetapost selects metapost as the figure pro-
cessor and makes specific features available. It changes the extension used on the output file
to ‘.mp’ to signal that it can no longer be processed with metafont. There is also a meta-
font option (command \usemetafont), but it is redundant, as metafont is the default (for
backward compatibility of files written before metapost existed). Either command must
come before the \opengraphsfile command (see section 4.1). They should not be used
together in the same document. (Actually they can, but one needs to close one output file
and open another. Moreover, it hasn’t ever been seriously tested, and it wasn’t taken into
consideration in writing most of the macros.) If the command form \usemetapost is used
in a LATEX2" document, it must come in the preamble. Because of the timing of actions
by the babel package and by older versions of supp-pdf.tex (input by pdftex.def in the
graphics package), when pdfLATEX is used, mfpic should be loaded and \usemetapost (if
used) declared before babel is loaded.

2.2 mplabels, \usemplabels, \nomplabels.
Causes all label creation commands to write their contents to the output file. It effects only
labels on the figure, not a caption added by the \tcaption command (see section 4.7.1). In
this case labels are handled by metapost and can be rotated. It requires metapost, and
will be be ignored without it (metafont cannot handle labels). Using this option without
the metapost option may also produce an error message either from TEX or metafont. The
command forms can be placed anywhere. If used outside an mfpic environment, they affect
all subsequent \tlabel commands; inside an mfpic environment they affect all \tlabel
commands in that figure.

When this is in effect, the labels become part of the figure and, in the default handling,
they may be clipped off or covered up by later drawing elements. But see the next section
on the overlaylabels option. Labels added to a picture contribute to the bounding box even
if truebbox is not in effect.

The user is responsible for adding the appropriate verbatimtex header to the output
file if necessary. For this purpose, there is the \mfpverbtex command, see section 4.7.
If the label text contains only valid plain TEX macros, there is generally no need for a

5

2 overlaylabels, \overlaylabels, \nooverlaylabels. 6

verbatimtex preamble at all. If you add a verbatimtex preamble of LATEX code take care
to make sure metapost calls LATEX (for example, the mpost command may take an option
for this purpose, or an environmental variable named TEX may be set equal to latex in the
command shell of your operating system.).

2.3 overlaylabels, \overlaylabels, \nooverlaylabels.
In the past, under mplabels all text labels created by \tlabel and its relatives were added
to the picture by metapost as they occurred. This made them subject to later drawing
commands: they could be covered up, erased, or clipped. With this option (or after the
command \overlaylabels) text labels are saved in a separate place from the rest of a
picture. When a picture is completed, the labels that were saved are added on top of it.
This is the way labels always behave under the metafont option, because then TEX must
add the labels and there is no possibility for special effects involving clipping or erasing (at
the metafont level).

With the metapost option, but without mplabels it has been decided to keep the same
behavior (and the same code) as under the metafont option. However, when mplabels is used,
there is the possibility for special effects with text, and it has always been the behavior before
version 0.7 to simply place the labels as they occurred. It turns out that placing the labels
at the end is cleaner and simpler to code, so I experimented with it and rejected it as a
default, but now offer it as an option. With this option, mfpic labels have almost the same
behavior with or without mplabels.

The commands may be used anywhere. Outside a figure they affect all subsequent figures,
inside a figure they affect all subsequent text in that figure. The commands and option are
ignored under the metafont option.

2.4 truebbox, \usetruebbox, \notruebbox.
Normally metapost outputs an EPS file with the actual bounding box of the figure. By
default, mfpic overrides this and sets the bounding box to the dimensions specified by the
\mfpic command that produced it. (This used to be needed for TEX is to handle \tlabel
commands correctly. Now, it is just for backward compatability, and for compatability with
metafont’s behavior.) It is reasonable to let metapost have its way, and that is what this
option does. If one of the command forms is used in an mfpic environment, it affects only
that environment, otherwise it affects all subsequent figures. This option currently has no
effect with metafont, but should cause no errors.

This option is almost mandatory if you wish to use dvipdfm(x) to convert TEX’s DVI
output to PDF. Both dvipdfm and dvipdfmx have a tendency to clip metapost figures
to the stated bounding box. Thus, anything running outside those bounds is lost.

2.5 clip, \clipmfpic, \noclipmfpic.
The clip option causes all parts of the figure outside the rectangle specified by the \mfpic
command to be removed. The commands can come anywhere. If issued inside an mfpic
environment they affect the current figure only. Otherwise all subsequent figures are affected.
Note: this is a rather rudimentary option. It has an often unexpected interaction with
truebbox. When both are in effect, metapost will produce a bounding box that is the
intersection of two rectangles: the true one without clipping, and the clipping rectangle (i.e.,
the one specified in the \mfpic command). It is possible for the actual figure to be much
smaller than this bounding box (even empty!). This is a property of the metapost clip
command and we know of no way to avoid it.

2 centeredcaptions, \usecenteredcaptions, \nocenteredcaptions. 7

2.6 centeredcaptions, \usecenteredcaptions, \nocenteredcaptions.
The centeredcaptions option causes multiline captions created by \tcaption to have all lines
centered. This has no effect on the normal LATEX \caption command.5

The commands can be issued anywhere. If inside an mfpic environment they should
come before the \tcaption command and affect only it, otherwise they affect all subsequent
figures. They should not be used in the argument of a \tcaption command.

2.7 raggedcaptions, \useraggedcaptions, \noraggedcaptions.
The raggedcaptions option causes multiline captions created by \tcaption to have all lines
raggedright. If centeredcaptions is on, both sides will be ragged. This option can be turned off
with the command \noraggedcaptions. This is the default: to have all lines except the last
justified. The last line is either centered or flush left according to whether centeredcaptions
is on or off.

The commands can be issued anywhere. If inside an mfpic environment they should
come before the \tcaption command and affect only it, otherwise they affect all subsequent
figures. They should not be used in the argument of a \tcaption command.

2.8 debug, \mfpicdebugtrue, \mfpicdebugfalse.
The debug option causes mfpic to write a rather large amount of information to the .log file
and sometimes to the terminal. Debug information generated by mfpic.tex while loading
is probably of interest only to developers, but can be turned on by giving a definition to
the command \mfpicdebug prior to loading. Any definition will work because mfpic only
checks whether it is defined.

2.9 clearsymbols, \clearsymbols, \noclearsymbols.
Mfpic has two commands, \point and \plotsymbol that place a small symbol at each of a
list of points. The first can place either a small filled disk or an open disk, the choice being
dictated by the setting of the boolean \pointfilltrue or \pointfillfalse. The behavior
of \point in the case of \pointfillfalse is to erase the interior of the disk in addition to
drawing its circumference.

The second command \plotsymbol can place a variety of shapes, some open, some not.
Its behavior before version 0.7 was to always draw the shape without erasing the interior. Two
other commands that placed these symbols, \plotnodes and \plot, had the same behavior.
With this option, two of these, \plotsymbol and \plotnodes, will erase the interior of the
open symbols before drawing them. Thus \plotsymbol{SolidCircle} still works just like
\pointfilltrue\point, and now with this option \plotsymbol{Circle} behaves the same
as \pointfillfalse\point. The \plot command is unaffected by this option.

2.10 draft, final, nowrite, \mfpicdraft, \mfpicfinal, \mfpicnowrite.
Under the metapost option, the various macros that include the EPS files emit rather large
amounts of confusing error messages when the files don’t exist (especially in LATEX). For this
reason, before each picture is placed, mfpic checks for the existence of the graphic before
trying to include it. However, on some systems checking for the existence of a nonexistent
file can be very slow because the entire TEX search path will need to be checked. There-
fore, mfpic doesn’t even attempt any inclusion on the first run. The first run is detected
by the non-existence of hfilei.1, where hfilei is the name given in the \opengraphsfile

5This writer [DHL] feels that \tcaption is too limited and users ought to apply the caption by other
means, such as LATEX’s \caption command, outside the mfpic environment.

2 mfpreadlog, \mfpreadlog. 8

command (but see also section 4.1). These options can be used to override this automatic
detection. All the command versions should come before the \opengraphsfile command.
The \mfpicnowrite command must come before it.

These options might be used if, for example, the first figure has an error and is not
created by metapost, but you would like mfpic to go ahead and include the remaining
figures. Then use final. It can also be used to override a LATEX global draft option. Or if
hfilei.1 exists, but other figures still have errors and you would like several runs to be
treated as first runs until metapost has stopped issuing error messages, then use draft.
These commands also work under the metafont option, but time and error messages are less
of an issue then. If all the figures have been created and debugged, some time might be
saved (with either metafont or metapost) by not writing the output file again, then nowrite
can be used.

2.11 mfpreadlog, \mfpreadlog.
From version 0.8, there exists a scheme to allow metafont or metapost to pass information
back to the .tex file. This is done by writing code to the figure file requesting metafont
to place that information in the .log file it produces. This option instructs mfpic to read
through that log file line-by-line looking for such information. Since such log files can be
potentially quite lengthy, this is made an option. If the command form \mfpreadlog is
used, it must come before the \opengraphsfile command, since that is when the file will
be examined. At the present time, the only mfpic facility that requires this two-way com-
munication is \assignmfvalue (see subsection 4.12.8). If this is used, the filename given to
\opengraphsfile should not be the same as the TEX source file in which this occurs, as
then the wrong .log may be read.

2.12 Scoping Rules.
Some of these options merely change TEX behavior, others write information to the output
file for metafont or metapost. Changes in TEX behavior obey the normal TEX grouping
rules, the information written to the output file obeys metafont grouping rules. Since
each mfpic environment is both a TEX group and (corresponds to) a metafont group, the
following always holds: use of one of the command forms inside of an mfpic environment
makes the change local to that environment.

An effort has been made (as of version 0.7) to make this universal. That is, any of the
commands listed above for turning options on and off will be global when issued outside an
mfpic environment. The debug commands are exceptions; they obey all TEX scoping rules.

We have also tried to make all other mfpic commands for changing the various param-
eters follow this rule: local inside mfpic environment, global outside. If this is ever untrue,
and I don’t document that fact, please let me know.

The following are special:

\usemetapost, \usemetafont, \mfpicdraft, \mfpicfinal, \mfpicnowrite,
and \mfpreadlog.

Their effects are always global, partly because they should occur prior to the initialization
command \opengraphsfile (described in section 4.1). Note that \usemetapost may cause
a file of graphic inclusion macros to be input. If this command is issued inside a group, some
definitions in that file may be lost, breaking the graphic inclusion code.

3 Metafont and Metapost Data Types.
Since the arguments of most mfpic drawing commands are sent to metafont to be inter-
preted, it’s useful to know something about metafont concepts. In this chapter we will
discuss some of the data types metafont supports. Even the casual user should know how
coordinates and colors are treated and so should at least skim the next two sections. The
last section can be read when the user wants to manipulate more complex objects.

Metafont permits several different data types, and we will mainly be concerned with
six of these: numeric, pair, color (metapost only), path, picture and boolean.6 In metapost
version 1.000, a tenth data type was added, cmykcolor, and the color data type can be referred
to as ‘rgbcolor’ when a distinction is necessary.

A variable is a symbolic name, which can be a single letter such as A, or a descriptive
name like origin. Any sequence of letters and underscores is permitted as a variable name.
Numeric indexes are also allowed, provided all variables that differ only in the index have the
same type. Thus A1, A2, etc., might be variables which are all of type pair. Quite a lot more
is permited for variable names, but the rules are rather complex and easy to violate. Mfpic
has commands for creating both simple variables and indexed variables (called arrays) but
the casual user can get quite a lot of use out of mfpic without ever creating or using a
metafont variable.

Metafont also has something akin to functions. For example, sin(1.57) might repre-
sent a function named sin receiving the parameter 1:57 as input and returning the appro-
priate value. Functions can take any number of parameters and return any of the data types
that metafont supports.7

3.1 Numerics and pairs.
Metafont has numeric quantities. These include lengths, such as the radius of a circle, as
well as dimension units such as in (inches) and pt (points). In fact it understands all the
same units that TEX does. These numeric quantities can be constants (explicit numbers) or
variables (symbolic names). In fact, in and pt are symbolic names for numeric quantities.

Metafont also has pair objects, which may be constants or variables. Constants of
type pair have the form (x,y) where x and y are numbers, for example (0,0). Pairs are
two-dimensional quantities used for representing either points or vectors in a rectangular
(Cartesian) coordinate system.

In this manual we often represent each pair by a brief name, such as hpi or hvi, the
meanings of which are usually obvious in the context of the macro. These are intended to be
replaced in actual use by either a pair constant or variable. The succinctness of this notation
helps us to think geometrically rather than only of coordinates.

3.2 Colors.
Metapost has the same concepts as metafont, but also has color objects, which may also
be constants or variables. In recent MP, colors come in two flavors: rgbcolor and cmykcolor.
Constants of type rgbcolor have the form (r,g,b) where r , g, and b are numbers between
0 and 1 determining the relative proportions of red, green and blue in the color (the ‘rgb’
model). Constants of type cmykcolor have the form (c,m,y,k) where c, m, y and k are

6For the curious, there are a total of eight types (nine or ten for metapost). The other three are string,
transform and pen. metafont also permits expressions that produce nothing, which is sometimes called the
vacuous type, but doesn’t allow (or need) variables of this type.

7Including the vacuous type.

9

3 Paths, pictures and booleans. 10

numbers between 0 and 1 determining the relative proportions of cyan, magenta, yellow and
black in the color (the ‘cmyk’ model).

A color variable is a name, like red, blue (both predefined rgb colors in metapost) or
magenta (predefined by mfpic to be an rgb color if metapost has version < 1:000, a cmyk
color if the version is at least 1.000).

3.3 Paths, pictures and booleans.
Most of the things that mfpic is designed to draw are paths. Examples of paths are circles,
rectangles, other polygons, graphs of functions and splines. Because we tend to want to draw
these (or fill them, or render them in other ways) we call the mfpic commands that produce
them figure macros. Although they are much more complex than numerics, pairs, or colors,
they can still be stored in symbolic names.

Normally in mfpic we want to create a picture, usually by rendering one or more paths.
It is possible in metafont to store a picture in a symbolic name without actually drawing
it. However, because of their complexity, objects of type picture require somewhat more
care than paths or other data types. Do not expect to use stored pictures in the same
way as stored paths. In fact, one should use picture variables only in those command that
are explicitly designed for them. In mfpic to date these are only \tile...\endtile and
\mfpimage to store pictures, and \putmfpimage to draw copies of one. There is also \tess,
but it is used only to fill a region with copies of a picture created by \tile.

The boolean data type is one of the values true or false. Variables of type boolean are
symbolic names that can take either of these two values. Usually these are used to influence
the behavior of some command by setting a relevant boolean variable to one or the other
value.

4 The Macros.
Many of the commands of mfpic have optional arguments. These are denoted just as in
LATEX, with square brackets. Thus, the command for drawing a circle can be given

\circle{(0,0),1}

having only the mandatory argument, or

\circle[p]{(0,0),1}

Whenever an optional argument is omitted, the behavior is equivalent to some choice of the
optional argument. In this example, the two forms have exactly the same behavior, drawing
a circle centered at .0; 0/ with radius 1. In this case we will say “[p] is the default”. Another
example is \point{(1,0)} versus \point[3pt]{(1,0)}. They both place a dot at the point
.1; 0/. The second one explicitly requests that it have diameter 3pt; the first will examine
the length command \pointsize, which the user can change, but it is initialized to 2pt. In
this case we will say “the default is the value of \pointsize, initially 2pt”.

If an mfpic command that takes an optional argument finds only empty brackets (com-
pletely empty, no spaces), then it will use the default value. This is useful for commands that
have two optional arguments and one wants the default value in the first one and some non-
default value in the second. An optional argument should normally not contain any spaces.
Even when the argument contains more than one piece of data, spaces should not separate
the parts. In some cases this will cause no harm, but it would be better to avoid doing it
altogether, because there are cases where it will cause wrong results or error messages.

4.1 Files and Environments.

\opengraphsfile{hfilei}
: : :

\closegraphsfile

These macros open and close the metafont or metapost file which will contain the
pictures to be included in this document. The name of the file will be hfilei.mf (or hfilei.mp).
Do not specify the extension, which is added automatically.

Note: This command may cause hfilei.mf or hfilei.mp to be overwritten if it already
exists, so be sure to consider that when selecting the name. Repeating the running of TEX
will overwrite the file created on previous runs, but that should be harmless. For if no
changes are made to mfpic environments, the identical file will be recreated, and if changes
have been made, then you want the file to be replaced with the new version.

It is possible (but has not been seriously tested) to close one file and open another, and
even to change between metapost and metafont in between. If anything goes wrong with
this, contact the maintainer and it might be fixed in some later version.

There may be limitations on what can be used as a filename. As of mfpic version 1.00,
we have tried to permit \jobname as part of hfilei. Thus we permit TEX macros, but they
should expand to non-special characters. Permitting macros makes it essentially impossible
for the filename to contain the backslash and brace characters. Also spaces are problematic.
However other special TEX characters (for example: tilde, underscore and percent) can be
used, though that is not recommended.

11

4 Files and Environments. 12

\mfpic[hxfactori][hyfactori]{hxmini}{hxmax i}{hymini}{hymax i}
: : :

\endmfpic

These macros open and close the mfpic environment8 in which the drawing macros make
sense. While many mfpic commands can be used inside or outside this environment, those
that actually produce visible output are required to be inside. The \mfpicmacro also sets up
the local coordinate system for the picture. The hxfactori and hyfactori parameters establish
the length of a coordinate system unit, as a multiple of the TEX dimension \mfpicunit. If
neither is specified, both are taken to be 1 and each coordinate system unit is 1 \mfpicunit.
If only one is specified, then they are assumed to be equal. Note that some drawing com-
mands require equal scales to work as expected: if you try to draw a circle with different
scales you will get an ellipse.

The hxmini and hxmax i parameters establish the lower and upper bounds for the x-
axis coordinates; similarly, hymini and hymax i establish the bounds for the y-axis. These
bounds are expressed in local units—in other words, the actual width of the picture will
be .hxmax i � hxmini/ � hxfactori times \mfpicunit, its height .hymax i � hymini/ � hyfactori
times \mfpicunit, and its depth zero.

Most of mfpic’s drawing macros accept parameters which are coordinate pairs. A coordi-
nate pair is a pair of numbers .x; y/ enclosed in parentheses, with hxmini � x � hxmax i and
hymini � y � hymax i.9 We will call these graph coordinates and refer to the numbers x and
y as being in graph units. Things like the thickness of lines and the lengths of arrowheads
are required to be expressed in actual lengths such as 1pt or 3mm. These will be referred to
as absolute units.

One can scale all pictures uniformly by changing \mfpicunit, and scale an individual
picture by changing hxfactori and hyfactori. After loading mfpic, \mfpicunit has the value
1pt. One pt is a printer’s point, which equals 1/72.27 inches or 0.35146 millimeters.

Note: Changing \mfpicunit or the optional parameters will scale the coordinate system,
but not the values of parameters that are defined in absolute units. If you wish, you can set
these to multiples of \mfpicunit, but it is difficult (and almost certainly unwise) to get the
thickness of lines (for example) to scale along with the scale parameters.

In addition to establishing the coordinate system, these scales and bounds are used to
establish the metric for the metafont character or bounding box for the metapost figure
described within the environment. If any of these parameters are changed, the .tfm file
(metafont) or the bounding box (metapost) will be affected, so you will have to be sure
to reprocess the TEX file after processing the .mf or .mp file, even if no other changes are
made in the figure.

The value of these 6 parameters to \mfpic are available within the environment as
macros: \xfactor, \yfactor, \xmin, \xmax, \ymin and \ymax.

\mfpicnumber{hnumi}
Normally, \mfpic assigns the number 1 to the first mfpic environment, after which the

number is increased by one for each new mfpic environment. This number is used internally
to include the picture. It is also transmitted to the output file where it is used as the
argument to a beginmfpic command. In metafont this number becomes the position of

8We use the term ‘environment’ loosely. However, in LATEX one may use an actual mfpic environment.
See page 13.

9These inequalities can be violated, usually causing something to be drawn outside the designated borders
of the figure.

4 Common objects. 13

the character in the font file, while in metapost it is the extension on the graphic file that
is output. The above command tells mfpic to ignore this sequence and number the next
mfpic figure with hnumi (and the one after that hnumiC1, etc.). It is up to the user to make
sure no number is repeated, as no checking is done. Numbers greater than 255 may cause
errors, as TEX assumes that characters are represented by 8-bit numbers. If the first figure
is to be numbered something other than 1, then, under the metapost option, this command
should come before \opengraphsfile, as that command checks for the existence of the first
numbered figure to determine if there are figures to be included.

\everymfpic{hcommandsi}
\everyendmfpic{hcommandsi}

These commands store the hcommandsi. The first arranges for these commands to be
issued first thing in every mfpic environment and the second arranges for its commands
to be issued as the last thing in every such environment. These could be any commands
that make sense inside that environment. Their purpose is mainly to save typing if there is
identical setup being performed in every picture.

\begin{mfpic}...\end{mfpic}

In LATEX you may prefer to use \begin{mfpic} and \end{mfpic} (instead of \mfpic
and \endmfpic). This is by no means required. The sample file lapictures.tex provided
with mfpic illustrates this use of an mfpic environment in LATEX.

One should be careful using TEX groups inside mfpic environments. These can be useful
to limit the scope of declarations or of changes to some variables. However, they do not limit
the scope of changes to the figure file that is being written, so there is a danger that TEX
and metafont will have different values. There are also some mfpic commands that need
to be at the outermost level. Thus, grouping should generally be avoided except for those
groups provided by mfpic commands.

For the remainder of the macros, the numerical parameters are expressed in graph units,
the units of the local coordinate system specified by \mfpic, unless otherwise indicated.

4.2 Common objects.
The mfpic macros that draw things can be roughly divided into two classes.

1. Those that simply cause something to be drawn. Examples of these are the \point
command, which places a dot at a list of coordinates, and \gridlines, which draw
coordinate lines with specified separation.

2. Those that both define and draw a path. The macros \circle, \rect, and \polyline
are examples of these.

Macros of type 2 are referred to hereafter as figure macros, for lack of a better term.
With them one can use prefix macros to modify various aspects of the path and how it is
drawn. For example,

\polyline{(1,2),(3,4)}

draws a line from .1; 2/ to .3; 4/, but

\dotted\polyline{(1,2),(3,4)}

produces a dotted version, and

\arrow\polyline{(1,2),(3,4)}

4 Common objects. 14

draws it with an arrowhead at the tip. This is not possible with \gridlines, for example. As
mfpic and the accompanying metafont package grafbase are currently written, prefix
macros can only be applied to single paths, and \gridlines produces a whole set of lines.
In this manual, as each macro is introduced, if it is a figure macro, this will be explicitly
stated.

Some commands depend on the value of separately defined parameters. all these param-
eters are initialized when mfpic is loaded. In the following descriptions we give the initial
value of all the relevant parameters. Mfpic provides commands to change any of these pa-
rameters. When metapost output is selected, figures can be drawn in any color and several
of the above mentioned parameters are colors. For example, drawcolor is the name of the
default color used to draw curves, headcolor is used when drawing arrowheads, etc. To save
repetition: all special colors for figures are initialized to black except background, which is
white.

4.2.1 Points, lines, and rectangles

\point[hsizei]{hp0i,hp1i,: : :}

Draws small disks centered at the points specified in the list of ordered pairs. The optional
argument hsizei is an absolute dimension that determines the diameter of the disks. The
default is the TEX dimension \pointsize, initially 2pt. The disks have a filled interior if
the command \pointfilltrue has been issued (the initial behavior). After the command
\pointfillfalse, \point commands will produce outlined circles with the interiors erased.
The color of the circles is the value of the predefined variable pointcolor, and the color
inside of the open circles is the value of the variable background.10

\plotsymbol[hsizei]{hsymboli}{hp0i,hp1i,: : :}

Draws small symbols centered at the points hp0i, hp1i, and so on. The symbols must be
given by name, and the available symbols are:

Asterisk, Circle, Diamond, Square, Triangle, Star, SolidCircle,
SolidDiamond, SolidSquare, SolidTriangle, SolidStar, Cross and Plus.

The names should be self-explanatory, the ‘Solid’ ones are filled in, the others are outlines.
Under metapost, symbols are drawn in pointcolor. The hsizei defaults to \pointsize as in
\point above. Asterisk consists of six line segments while Star is the standard five-pointed
star formed from ten straight line segments. Cross is a � shape. The name ‘\plotsymbol’
comes from the fact that the \plot command (see subsection 4.5.1), which was written first,
utilizes these same symbols. The command \symbol was already taken (standard LATEX).

While one would rarely want to use them for this purpose, the following symbols are
also available:

Arrowhead, Crossbar, Leftbar, Rightbar, Lefthook, Righthook, Leftharpoon,
Rightharpoon.

These are mainly intended for making arrows. See subsection 4.4.3 for a further description.
The difference between \pointfillfalse\point and \plotsymbol{Circle} is that the

inside of the circle will not be erased in the second version, so whatever else has already been
drawn in that area will remain visible. This is the default (for backward compatibility), but
that can be changed with the commands below.

10metapost cannot actually erase. The illusion of erasing is created by painting over with background.

4 Common objects. 15

\clearsymbols
\noclearsymbols

After the first of these two commands, subsequent \plotsymbol commands will draw the
open symbols with their interiors erased. After the second, the default behavior (described
above) will be restored. These commands have no effect on \point. \plotnodes (see sub-
section 4.5.1) also responds to the settings made by these commands. The \plot command
(also in subsection 4.5.1) does not.

You can design your own ‘symbols’. See the discussion of arrowheads in subsection 4.4.3,
and of storing paths in subsection 4.10.2.

\pointdef{hnamei}(hxcoordi,hycoordi)
Defines a symbolic name for an ordered pair and the coordinates it contains. hnamei is

any legal TEX command name without the backslash; hxcoordi and hycoordi are any numbers.
For example, after the command \pointdef{A}(1,3), \A expands to (1,3), while \Ax and
\Ay expand to 1 and 3, respectively. If mplabels is in effect one can use \A to specify where
to place a text label, but if TEX is placing labels one must use (\Ax,\Ay). In most other
cases, one can use \A where a pair or point is required.

\polyline{hp0i,hp1i,: : :}
\lines{hp0i,hp1i,: : :}

The figure macro \polyline produces connected line segments from hp0i to hp1i, and
from there to hp2i, etc. The result is an open polygonal path through the specified points,
in the specified order. The macro \lines is an alias for \polyline.

\polygon{hp0i,hp1i,: : :}
\closedpolyline{hp0i,hp1i,: : :}

The figure macro \polygon produces a closed polygon with vertices at the specified
points in the specified order. It works exactly like \polyline except the last point in the
list is also joined to the first. The macro \closedpolyline is an alias for \polygon.

\rect{hp0i,hp1i}

This figure macro produces the closed rectangle with horizontal and vertical sides, having
the points hp0i and hp1i as diagonally opposite corners. The same rectangle can be specified
in four different ways: either pair of opposite corners in either order.

It is occasionally helpful to know that connected paths like those produced by \polyline
or \rect have a start and a finish as well as sense (or direction). The path produced by
\polyline starts at the first listed point and ends at last, having the direction determined
by the order of the points. For \rect the sense may be clockwise or anticlockwise depending
on the corners used: it starts by moving horizontally from the first listed point. Several
mfpic macros (such as those that add arrowheads) treat the beginning and the end of a
path differently, or adjust their behavior according to the sense of the curve.

\regpolygon{hnumi}{hnamei}{heqn1i}{heqn2i}

This figure macro produces a closed regular polygon with hnumi sides. The second ar-
gument, hnamei is a symbolic name. It can be used to refer to the vertices later. The last
two arguments should be equations that position two of the vertices or one vertex and the
center. The center is referred to by hnamei0 and the vertices by hnamei1 hnamei2, etc.,
going anticlockwise around the polygon. The hnamei itself (without a number suffixed) will
be a metafont variable assigned the value of hnumi. For example,

4 Common objects. 16

\regpolygon{5}{Kay}{Kay0=(0,1)}{Kay1=(2,0)}

will produce a regular pentagon with its center at .0; 1/ and its first vertex at .2; 0/. One
could later draw a star inside it with

\polygon{Kay1,Kay3,Kay5,Kay2,Kay4}

Moreover, Kay will equal 5. The name given becomes a metafont variable and care should
be taken to make the name distinctive so as not to redefine some internal variable.

4.2.2 A word about list arguments
We have seen already four mfpic macros that take a mandatory argument consisting of
an arbitrary number of coordinate pairs, separated by commas. There are many more, and
some that take a comma-separated list of items of other types. If the lists are long, especially
if they are generated by a program, it might be more convenient if one could simply refer
to an external file for the data. This is possible, and one does it the following way: instead
of \polyline{hlisti}, one can write

\polyline\datafile{hfilenamei}

where hfilenamei is the full name of the file containing the data. The required format of this
file and the details of this usage can be found in subsection 4.6.3. This method is available
for any command that takes a comma-separated list of data (of arbitrary length) as its last
argument, with the exception of those commands that add text to the picture. Examples of
the latter are \plottext and \axislabels (subsection 4.7.1).

4.2.3 Axes, axis marks, and grids

\axes[hhleni]
\xaxis[hhleni]
\yaxis[hhleni]

These are retained for backward compatibility, but there are more flexible alternatives
below. They draw x- and y-axes for the coordinate system. The command \axes is equivalent
to \xaxis followed by \yaxis which produce the obvious. The x- and y-axes extend the
full width and height of the mfpic environment. The optional hhleni sets the length of
the arrowhead on each axis. The default is the value of the TEX dimension \axisheadlen,
initially 5pt. The shape of the arrowhead is determined as in the \arrow macro (section 4.4).
The color of the head is the value of headcolor, the shaft is drawcolor.

Unlike other commands that produce lines or curves, these do not respond to prefix
macros. They always draw a solid line (with an arrowhead unless \axisheadlen is 0pt).
They do respond to changes in the pen thickness (see \penwd in section 4.11) but that is
pretty much the only possibility for variation.

\axis[hhleni]{hone-axisi}
\doaxes[hhleni]{haxis-listi}

These produce any of 6 different axes. The parameter hone-axisi can be x or y, to produce
(almost) the equivalent of \xaxis and \yaxis; or it can be l, b, r, or t to produce an axis
on the border of the picture (left, bottom, right or top, respectively). \doaxes takes a list
of any or all of the six letters (with either spaces or nothing in between) and produces the
appropriate axes. Example: \doaxes{lbrt}. The optional argument sets the length of the
arrowhead. In the case of axes on the edges, the default is the value of \sideheadlen, which
mfpic initializes to 0pt. For the x- and y-axis the default is \axisheadlen as in \xaxis
and \yaxis above.

4 Common objects. 17

The commands \axis{x}, \axis{y}, and \doaxes{xy} differ from the old \xaxis,
\yaxis and \axes in that these new versions respond to prefix macros. The \arrow prefix
previously mentioned is an exception: these macros add an arrowhead automatically. For
example, the sequence \dotted\axis{x} draws a dotted x-axis, but \dotted\xaxis pro-
duces a metafont error. A prefix macro applied to \doaxes generates no error, but only
the first axis in the list will be affected.

\axisline{hone-axisi}
\border

These are figure macros that draw the line or lines that an \axis command would draw.
An \axis command is almost the equivalent of

\arrow[lhhleni]\axisline{hone-axisi}.

The \axisline command is provided as a figure macro for maximum flexibility. For example,
one can use the star-form of the \arrow command if desired or decorate it with ones own
choice of arrowhead (see subsection 4.4.3).

Also a figure macro, \border produces the rectangle which, if drawn, is visibly the same
as the four border \axisline s (without heads). It is a closed path and could easily be drawn
with a \rect command, but the \border command automatically adjusts for the margins
set by the commands below.

The side axes are drawn by default with a pen stroke along the very edge of the picture
(as determined by the parameters to \mfpic). This can be changed with the command
\axismargin described below.

Axes on the edges are drawn so that they don’t cross each other. \doaxes{lbrt}, for
example, produces a perfect rectangle. If the x- and y-axis are drawn with \axis or \doaxes,
then they will not cross the side axes. For this to work properly, all the following margin
settings have to be done before the axes are drawn.

\axismargin{hone-axisi}{hnumi}
\setaxismargins{hnumi}{hnumi}{hnumi}{hnumi}
\setallaxismargins{hnumi}

The parameter hone-axisi is one of the letters l, b, r, or t, and \axismargin causes
the given axis to be shifted inward by the hnumi specified (in graph units). The second
command \setaxismargins takes 4 arguments, using them to set the margins starting with
the left and proceeding anticlockwise. The last command sets all the axis margins to the
same value.

A change to an axis margin affects not only the axis at that edge but also the three
axes perpendicular to it. For example, if the margins are Mlft, Mbot, Mrt and Mtop, then
\axis{b} draws a line starting Mlft graph units from the left edge and ending Mrt units
from the right edge. Of course, the entire line is Mbot units above the bottom edge. The
margins are also respected by the x- and y-axis, but only when drawn with \axis. The old
\xaxis, \yaxis and \axes ignore them.

Special effects can be achieved by lying to one axis about the other margins. That is,
axes can be draw in separate commands with changes to the declared margins in between.
Be aware that various other commands are affected by the margin values. Examples are the
already mentioned \border, as well as \grid and \gridlines (page 19 in this subsection).

4 Common objects. 18

\xmarks[hleni]{hnumberlisti}
\ymarks[hleni]{hnumberlisti}
\lmarks[hleni]{hnumberlisti}
\bmarks[hleni]{hnumberlisti}
\rmarks[hleni]{hnumberlisti}
\tmarks[hleni]{hnumberlisti}
\axismarks{haxisi}[hleni]{hnumberlisti}

These macros place hash marks on the appropriate axes at the places indicated by the
values in the list. The optional hleni gives the length of the hash marks. If hleni is not
specified, the TEX dimension \hashlen, initially 4pt, is used. The marks on the x- and
y-axes are centered on the respective axis; the marks on the border axes are drawn to the
inside. Both these behaviors can be changed (see below). The commands may be repeated
as often as desired. (The timing of drawing commands can make a difference as outlined in
appendix 5.6.) The command \axismarks{x} is equivalent to \xmarks and so on for each
of the six axes. (I would have used the shorter name \marks, but that name was already
taken by eTEX.)

The hnumberlisti is normally a comma-separated list of numbers. In place of this, one
can give a starting number, an increment and an ending number as in the following example:

\xmarks{-2 step 1 until 2}

is the equivalent of
\xmarks{-2,-1,0,1,2}

One must use exactly the words step and until. Spaces are not needed unless a variable
name is used in place of one of the numbers (see subsection 4.12.4). The number of spaces
is not significant.11 Users of this syntax should be aware that if any of the numbers is not
an integer then, because of natural round-off effects, the last value might be overshot and a
mark not printed there. For example, to ensure that a mark is printed at the point 1:0 on
the x-axis, the second line below is better than the first.

\xmarks{0 step .2 until 1.0}
\xmarks{0 step .2 until 1.1}

\setaxismarks{haxisi}{hposi}
\setbordermarks{hlposi}{hbposi}{hrposi}{htposi}
\setallbordermarks{hposi}
\setxmarks{hposi}
\setymarks{hposi}

These set the placement of the hash marks relative to the axis. The parameter haxisi
is one of the letters x, y, l, b, r, or t, and hposi must be one of the literal words inside,
outside, centered, onleft, onright, ontop or onbottom. The second command takes four
arguments and sets the position of the marks on each border. The third command sets the
position on all four border axis to the same value. The last two commands are abbreviations
for \setaxismarks{x}{hposi} and \setaxismarks{y}{hposi}, respectively.

Not all combinations make sense (for example, ontop for the right side axis). In these
cases, no error message is produced. These words are actually metafont numeric variables
and the variables ontop and onleft, for example, have the same value. Thus, using ontop

11Experienced metafont programmers may recognize that anything can be used that is permitted in
metafont’s hforloopi syntax. Thus the given example can also be reworded \xmarks{-2 upto 2}, or even
\xmarks{2 downto -2}. See subsection 4.12.7 for more on for-loops in mfpic.

4 Common objects. 19

for the right axis will have the same effect as onleft. Similarly, onright and onbottom are
the same. The parameters inside and outside usually make no sense for the x- and y-axes,
but if they are used then inside means ontop for the x-axis and onright for the y-axis.

\grid[hsizei]{hxsepi,hysepi}
\gridpoints[hsizei]{hxsepi,hysepi}
\lattice[hsizei]{hxsepi,hysepi}
\hgridlines{hysepi}
\vgridlines{hxsepi}
\gridlines{hxsepi,hysepi}

\grid draws a dot at every point for which the first coordinate is an integer multiple of
the hxsepi and the second coordinate is an integer multiple of hysepi. The diameter of the
dot is determined by hsizei. The default is the value of \griddotsize, initially 0.5pt. Under
the metapost option, the color of the dot is pointcolor. The commands \gridpoints and
\lattice are synonyms for \grid.

\hgridlines draws the horizontal and \vgridlines the vertical lines through these same
points. \gridlines draws both sets of lines. The thickness of the lines is set by \penwd.
Authors are recommended to either reduce the pen width or change drawcolor to a lighter
color for grid lines. Or omit them entirely: well-designed graphs usually don’t need them
and almost never should both horizontals and verticals be used.

The above commands draw their dots and lines within the margins set by the axis margin
commands on page 17.

\plrgrid{hrsepi,hanglesepi}
\gridarcs{hrsepi}
\gridrays{hanglesepi}
\plrpatch{hrmini,hrmax i,hrsepi,htmini,htmax i,htsepi}
\plrgridpoints[hsizei]{hrsepi,hanglesepi}

\plrgrid fills the graph with circular arcs and radial lines. \gridarcs draws only the
arcs, \gridrays only the radial lines. \plrgridpoints places a dot (diameter hsizei) at all
the places the rays and arcs would intersect. It takes an optional argument for the size of
the dots, the default being \griddotsize, the same as the \grid command.

The arcs lie on circles centered at .0; 0/ and the rays would all meet at .0; 0/ if extended.
The corresponding metafont commands actually draw just enough to cover the graph
area and then clip them to the graph boundaries. If you don’t want them clipped, use
\plrpatch. Unlike the rectangular coordinate grid commands, these do not respect the axis
margins (rectangular margins don’t really belong with polar coordinates).

\plrpatch draws arcs with radii starting at hrmini, stepping by hrsepi and ending with
hrmax i. Each arc goes from angle htmini to htmax i. It also draws radial lines with angles
starting at htmini, stepping by htsepi and ending with htmax i. Each line goes from radius
hrmini to hrmax i. If hrmax i � hrmini doesn’t happen to be a multiple of hrsepi, the arc
with radius hrmax i is drawn anyway. The same is true of the line at angle htmax i, so that
the entire boundary is always drawn.

If htsepi is larger than htmax i � htmini, then only the boundary rays will be drawn. If
hrsepi is larger than hrmax i � hrmini, then only the boundary arcs will be drawn.

The color used for rays and arcs is drawcolor, and for dots pointcolor. The advice
about color and use of \gridlines holds for \plrgrid and its relatives as well.

4 Common objects. 20

\vectorfield[hhleni]{hxspi,hyspi}{hformulai}{hrestrictioni}
\plrvectorfield[hhleni]{hrspi,htspi}{hformulai}{hrestrictioni}

These commande draw a field of vectors (arrows). The optional argument is the length
of the arrowhead, the default being the dimension \headlen, initially 3pt.

For \vectorfield, an arrow is drawn starting from each point .x; y/ where x is an integer
multiple of hxspi and y is an integer multiple of hyspi. The vector field is given by hformulai,
which should be a pair-valued expression in the literal variables x and y. Typically that would
be a pair of numeric expressions enclosed in parentheses and separated by a comma. The
last argument is a boolean expression in the literal variables x and y, used to restrict the
domain. That is, if the expression is false for some .x; y/, no arrow is drawn at that point.
If you do not wish to restrict the domain, type true for the restriction.

For \plrvectorfield, an arrow is drawn starting from each point with polar coordinates
.r; �/ if r is an integer multiple of hrspi and � is an integer multiple of htspi. In this case, the
hformulai must be a pair-valued expression in the literal variables r and t. This should be
(or produce) a pair of x and y coorinates, not a polar coordinate pair. If you have formulas
R.r; �/ for the length of each vector and T .r; �/ for the angle, then the following will convert
to .x; y/ pairs:

{polar (R(r,t),T(r,t))}

The last argument is as in \vectorfield, except it should depend on the literal variables r
and t.

In either case, the arrow is not drawn if the starting point would lie outside the borders
set with \axismargins and its relatives.

The following draws a rotational field, omitting the inside of the circle of radius 1, where
the arrows would be excessively long, and especially avoiding .0; 0/ where the vector field is
undefined.

\vectorfield[2.5pt]{.25,.25}{.5*(-y,x)/(x**2+y**2)}{x**2+y**2 >= 1}

The following is the same field, represented by arrows whose locations are regularly spaced
in polar coordinates.

\plrvectorfield[2.5pt]{.25,20}{polar(.5/r,t+90)}{r >= 1}

4.2.4 Circles, arcs and ellipses

\circle[hformati]{hspecificationi}
This figure macro produces a circle. Starting with mfpic version 0.7, there are more

than one way to specify a circle. In version 0.8 and later there are six ways, and one selects
which one by giving \circle an optional argument that signals what data will be specified
in the mandatory argument.

\circle[p]{hci,hri}
\circle[c]{hci,hpi}
\circle[t]{hp1i,hp2i,hp3i}
\circle[s]{hp1i,hp2i,h�i}
\circle[r]{hp1i,hp2i,hri}
\circle[q]{hp1i,hp2i,hri}

The optional arguments produce circles according to the following descriptions.

[p] The Polar form is the default. The data in the mandatory argument should then be
the center hci and radius hri of the circle. A negative radius is a mathematical error,

4 Common objects. 21

but it is accepted. It produces the same circle, with the same sense, but the starting
point (normally hri units to the right of the center) is hri units left of the center.

[c] The center-point form. In this case the data should be the center and one point on the
circumference. The circle starts at the point and has an anticlockwise sense.

[t] The three-point form. The data are three points that do not lie in a straight line. The
circle starts at the first point and has the sense determined by the order of the points.

[s] The point-sweep form. The data are two points on the circle, followed by the angle of
arc between them. This circle starts at the first point and has a sense determined by
the angle: anticlockwise for positive angles, clockwise for negative.

[r] The point-radius form. The data are two points on the circle, followed by the radius.
There are two circles with this data. The one that makes the angle from the first
to the second point positive and less than 180 degrees is produced. The sense of the
circle is normally anticlockwise starting at the first point. Using a negative radius is a
mathematical error, but this command just produces the other circle with the opposite
sense.

[q] The alternative point-radius form. The data are the same as for the [r] case, except
the other circle is produced. That is, a circle starting at the first point, proceeding
anticlockwise through an angle greater than 180 degrees to the second point, then
along the shorter arc to the first point. Again, a negative radius produces the other
circle with clockwise sense.

These optional arguments are also used in the \arc command (see below). The \circle
command draws the whole circle of which the corresponding \arc command draws only a
part.

\arc[hformati]{hspecificationi}
\arc*[hformati]{hspecificationi}

This figure macro produces a circular arc specified as determined by the hformati optional
parameter. As with \circle, the optional hformati parameter determines the format of the
other parameter, as indicated below. The user is responsible for ensuring that the parameter
values make geometric sense. The starting point of each arc is at the first specified angle or
point and the ending point is at the last one.

The star-form produces the complementary arc. That is, instead of the arc described
below, it produces the rest of the circle from the ending point to the starting point of the
arc described.
\arc[s]{hp0i,hp1i,h�i}
\arc[p]{hci,h�1i,h�2i,hri}
\arc[a]{hci,hri,h�1i,h�2i}
\arc[c]{hci,hp1i,h�i}
\arc[t]{hp0i,hp1i,hp2i}
\arc[r]{hp0i,hp1i,hri}
\arc[q]{hp0i,hp1i,hri}

The optional arguments produce arcs according to the following descriptions.
[s] The point-sweep form is the default format. It draws the circular arc starting from

the point hp0i, ending at the point hp1i, and covering an arc angle of h�i degrees,
measured anticlockwise around the center of the circle. If, for example, the points hp0i

and hp1i lie on a horizontal line with hp0i to the left, and h�i is between 0 and 360
(degrees), then the arc will sweep below the horizontal line (in order for the arc to be
anticlockwise). A negative value of h�i gives a clockwise arc from hp0i to hp1i.

4 Common objects. 22

[p] The polar form draws the arc of a circle with center hci starting at the angle h�1i and
ending at the angle h�2i, with radius hri. Both angles are measured anticlockwise from
the positive x axis. If the first angle is less than the second, the arc has an anticlockwise
sense, otherwise clockwise. A negative radius is a mathematical error, but the result
is the arc on the opposite side of the circle, as if both angles were increased by 180
degrees

[a] The alternative polar form differs from the polar form above only in the order of the
arguments. This seems (to me) a more reasonable order, and matches the order \sector
requires (see below). The [p] option is retained for backward compatibility.

[c] The center-point-angle form draws the circular arc with center hci, starting at the
point hp1i, and sweeping an angle of h�i around the center from that point. This is
the fundamental method for drawing arcs. All other methods are converted to this or
the point-sweep method. Even the point sweep form is converted to this one for angles
greater than 90 degrees.

[t] The three-point form draws the circular arc which passes through all three points given,
in the order given. Internally, this is converted to two applications of the point-sweep
form.

[r] The point-radius form draws an arc on the circle that \circle[r] would produce. The
arc starts at the point hp0i and ends at hp1i. Of the two possible arcs on that circle,
it produces the shorter one: the one with an angle � less than 180 degrees measured
anticlockwise around the center of the circle. A negative radius is a mathematical error,
but the result is the short arc on the other circle with a clockwise sense.

[q] The alternative point-radius form is the same as [r] except it produces the longer arc:
the one with angle � larger than 180 degrees measured anticlockwise around the center
of the circle. A negative radius is a mathematical error, but the result is the longer arc
on the other circle with a clockwise sense.

For both options [r] and [q] the angle is computed and then the point-sweep method
is used. If the absolute value of the radius is less than half the distance between the points,
then no such arc exists. In this case, the angle is just set equal to ˙180 degrees (as if the
radius were changed to half the distance).

\sector{hci,hri,h�1i,h�2i}

This figure macro produces the sector of the circle with center at the point hci and radius
hri, from the angle h�1i to the angle h�2i. Both angles are measured in degrees anticlockwise
from the direction parallel to the x axis. The sector forms a closed path. Note: \sector and
\arc[p] have the same parameters, but in a different order.12

\ellipse[h�i]{hci,hrxi,hryi}

This figure macro produces an ellipse with the x radius hrxi and y radius hryi, centered
at the point hci. The optional parameter h�i provides a way of rotating the ellipse by h�i
degrees anticlockwise around its center. Ellipses may also be created by differentially scaling
a circle and perhaps rotating the result. See subsection 4.10.2.

12This apparently was unintended, but we now have to live with it so as not to break existing .tex files.

4 Common objects. 23

\fullellipse{hC i,hM1i,hM2i}
\halfellipse{hM1i,hM2i,hM3i}
\quarterellipse{hM1i,hAi,hM2i}

For any parallelogram there is a unique ellipse incribed in it. The above allows one to ob-
tain that ellipse and parts of it. The input to \fullellipse is the center hC i of that parallel-
ogram and the midpoints hM1i and hM2i of two adjacent sides. For nhalfellipse, one sup-
plies the midpoints hM1i, hM2i, and hM3i of three successive sides. Lastly, \quarterellipse
requires the midpoints of two adjacents sides and the corner hAi between them. Internally,
a quarter-circle is transformed to produce the quarter-ellipse and the other two are built up
out of two or four such quarter-ellipses.

When dealing with arcs and circles, it is useful to work in polar coordinates:

\plr{(hr0i,h�0i),(hr1i,h�1i), : : :}

The macro \plr causes metafont to replace the specified list of polar coordinate pairs
by the equivalent list of rectangular (cartesian) coordinate pairs. Through \plr, commands
designed for rectangular coordinates can be applied to data represented in polar coordinates.
It must be cautioned that this wholesale conversion of a list applies only to commands that
take a list consisting of an arbitrary number of points, such as \polyline.

The effect of \plr is to apply a metafont command, polar, to each point in the list,
producing a new list. This metafont command can also be used separately in any situation
where a single metafont point is required. For example, to connect the point .2; 3/ to the
point with polar coordinates .1; 135/ write

\polyline{(2,3),polar(1,135)}

This last circle-producing macro I wrote for my own use. It produces a circle associated
with the hyperbolic geometry of a disk or a half-plane.

\pshcircle{hcenteri,hradiusi}
\pshcircle*{hcenteri,hradiusi}

This produces the circle whose hyperbolic center is at hcenteri and whose pseudohyper-
bolic radius is hradiusi. This all takes place inside the circle with center .0; 0/ and radius
1 (the unit circle). The hcenteri is required to be inside the unit circle and the hradiusi is
required to be less than 1.

The star-form is for the upper half-plane, which is the set of points with positive y-
coordinate In this case, the hcenteri must be in the upper half-plane and the hradiusi must
still be less than 1. If you are not versed in hyperbolic geometry, be warned that the actual
diameter of the resulting circle is on the order of 2y=.1�R/, where R is the hradiusi and y
is the y-coordinate of hcenteri. This can be quite large even for modest values of R and y.

4.2.5 Curves

\curve[htensioni]{hp0i,hp1i,: : :}
\cyclic[htensioni]{hp0i,hp1i,: : :}
\closedcurve[htensioni]{hp0i,hp1i,: : :}

These figure macros produce a smooth path through the specified points, in the specified
order. It is ‘smooth’ in two ways: it never changes direction abruptly (no ‘corners’ or ‘cusps’
on the curve), and it tries to make turns that are not too sharp. This latter property is
acheived by specifying (to metafont) that the tangent to the curve at each listed point is
to be parallel to the line from that point’s predecessor to its successor. The \cyclic variant

4 Common objects. 24

arranges for the last point to be connected (smoothly) to the first, and produces a closed
metafont Bézier curve. The command \closedcurve is an alias for \cyclic.

The optional htensioni influences how smooth the curve is. The special value infinity
(in fact, usually anything greater than about 10), makes the curve not visibly different from
a polyline. The higher the value of tension, the sharper the corners on the curve and the
flatter the portions in between. Metafont requires the tension to be larger than 0:75. The
default value of the tension is 1 when mfpic is loaded, but that can be changed with the
following command.

\settension{hnumi}
This sets the default tension for all commands that take an optional tension parameter.

Sometimes one would like a convex set of points to produce a convex curve. This will not
always be the case with \curve or \cyclic. You can verify this with the following example,
where the list of points traces a rectangle:

\cyclic{(0,0),(0,1),(1,1),(2,1),(2,0),(0,0)}

To produce a convex curve, use one of the following:

\convexcurve[htensioni]{hp0i,hp1i,: : :}
\convexcyclic[htensioni]{hp0i,hp1i,: : :}
\closedconvexcurve[htensioni]{hp0i,hp1i,: : :}

These figure macros can be used even if the list of points is not convex, and the result
will be convex where possible. The third one is an alias for for the second one.

Occasionally it is necessary to specify a sequence of points with increasing x-coordinates
and draw a curve through them. One would then like the resulting curve both to be smooth
and to represent a function (that is, the curve always has increasing x coordinate, never
turning leftward). This cannot be guaranteed with the \curve command unless the tension
is infinity.

\fcncurve[htensioni]{(x0,y0),(x1,y1),: : :}

This figure macro produces a curve through the points specified. If the points are listed
with increasing (or decreasing) x coordinates, the curve will also have increasing (resp.,
decreasing) x coordinates. The htensioni is a number greater than 1=3 which controls how
tightly the curve is drawn. Generally, the larger it is, the closer the curve is to the polyline
through the points. The default tension is that set with \settension, initially 1. For those
who know something about metafont, this ‘tension’ is not the same as the metafont
notion of tension (the tension in the \curve command), but it functions in a similar fash-
ion. In this case it can actually be any positive number, but only values greater than 1=3
guarantee the property of never doubling back.

\turtle{hp0i,hv1i,hv2i,: : :}

This figure macro produces a a sequence of line segments starting from the point hp0i,
and extending along the (2-dimensional vector) displacement hv1i. The next segment is
from the previous segment’s endpoint, along displacement hv2i. This continues for all listed
displacements, a process similar to ‘turtle graphics’.

4 Common objects. 25

4.2.6 Bar charts and pie charts

\barchart[hstarti,hsepi,hri]{hh-or-vi}{hlisti}
\bargraph. . .
\gantt. . .
\histogram. . .
\mfpbarchart. . .
\mfpbargraph. . .
\mfpgantt. . .
\mfphistogram. . .

The macro \barchart computes a bar chart or a Gantt chart. It does not draw the
bars, but only defines their rectangular paths which the user may then draw or fill or both
using the \chartbar macros (see below). Since bar charts have many names, \bargraph
and \histogram are provided as synonyms. The macro \gantt is also a synonym; whether
a Gantt chart or bar chart is created depends on the data.

Since \barchart never draws anything, there is no particular reason it needs to be inside
an mfpic environment. Starting with version 0.9 of mfpic this is no longer required, but
the command name \mfpbarchart must be used outside (in case some other package also
defines \barchart). One can use any of the four synonyms listed that start with ‘\mfp’. The
commands to draw the bars are still required to be inside an mfpic environment.
hh-or-vi should be v if you want the ends of the bars to be measured vertically from

the x-axis, or h if they should be measured horizontally from the y-axis. hlisti should be a
comma-separated list of numbers and ordered pairs giving the end(s) of each bar. A number
c is interpreted as the pair .0; c/; a pair .a; b/ is interpreted as an interval giving the ends
of the bar (for Gantt diagrams). The rest of this description refers to the h case; the v case
is analogous.

By default the bars are 1 graph unit high (thickness), from y D n � 1 to y D n.
Their width and location are determined by the data. The optional parameter consists of
three numeric parameters separated by commas. hstarti is the y-coordinate of the bottom
edge of the first bar, hsepi is the distance between the bottom edges of successive bars,
and hri is the fraction of hsepi occupied by each bar. The default behavior corresponds
to [0,1,1]. In general, bar number n will be from y D hstarti C .n � 1/ � hsepi to y D
hstarti C .n � 1C hri/ � hsepi

Notice the bars are numbered in order from bottom to top. You can reverse them by
making hsepi negative, and making hstarti the top edge of the first bar.

The fraction hri should be between �1 and 1. A negative value reverses the direction
from the ‘leading edge’ of the bar to the ‘trailing edge’. For example, if one bar chart is
created with

\barchart[1,1,-.4]{h}{: : :}

and another with

\barchart[1,1,.4]{h}{: : :}

both having the same number of bars, then the first will have its first bar from y D 1 to
y D 1� :4 D :6, while the second will have its first bar on top of that one, from 1 to 1C :4.
Similarly the next bars will be above and below y D 2, etc. This makes it easy to draw bars
next to one another for comparison.

4 Common objects. 26

\chartbar{hnumi}
\graphbar{hnumi}
\histobar{hnumi}
\ganttbar{hnumi}

The figure macro \chartbar (synonyms \graphbar, \ganttbar, and \histobar) takes
a number from 1 to the number of elements in the list of data of the most recent \barchart
command and produces the corresponding rectangular path computed by that command.
This behaves just like any other figure macro, and the prefix macros from section 4.5 may
be used to give adjacent bars contrasting colors, fills, etc.

\piechart[hdirihanglei]{hci,hri}{hlisti}
\mfppiechart. . .

The macro \piechart also does not draw anything, but computes the \piewedge regions
described below. The first part of the optional parameter, hdiri, is a single letter to indicate
a direction: ‘c’ for clockwise or ‘a’ for anticlockwise. The hanglei is the angle in degrees of
the starting edge of the first wedge. The defaults correspond to [c90], which means the
first wedge starts at 12 o’clock and proceeds clockwise.

The first required argument contains the center hci and radius hri of the chart. The
second required argument is the list of data: positive numbers separated by commas.

Since this command never actually draws anything, only defining the wedges, it makes
sense to heave it available outside the drawing environment. Starting with version 0.9 of
mfpic that is the case, but the command name is \mfppiechart (to avoid a name clash with
some other package’s \piechart command). The command to draw wedges (\piewedge, see
below) is still required to be inside an mfpic environment.

\piewedge[hspecihtransi]{hnumi}
This figure macro takes a number from 1 to the number of elements in the list of data

of the most recent \piechart command and produces the corresponding wedge-shaped
path computed by that command. By default, the path is positioned as computed by that
\piechart command, but The optional argument to \piewedge can override this. The
parameter hspeci is a single letter, which can be x, s or m. The x stands for exploded and it
means the wedge is moved directly out from the center of the pie a distance htransi. htransi
should then be a pure number and is interpreted as a distance in graph units. The s stands
for shifted and in this case htransi should be a pair of the form (hdx i,hdyi) indicating the
wedge should be shifted hdx i horizontally and hdyi vertically (in graph units). The m stands
for move to, and htransi is then the absolute coordinates (hx i,hyi) in the graph where the
point of the wedge should be placed.

4.2.7 Braces
This figure is intended to group some graphical objects and label them.

\gbrace{hz1i,hC i,hz2i}

This figure macro creates the shape of a brace (i.e., a ‘g’) with its ends at hz1i and hz2i

and its ‘center’ cusp at hC i. The three points must be expressed as ordered pairs or as
metafont pair expressions, and must be separated by commas. The ‘width’ of the brace
(the distance from hC i to the line through the other two points) is computed automatically
and should not be 0. The cusp of the brace will not necessarily be in the center of the brace.
Users position it with their choice of hC i. The cusp should not be positioned too close to
one of the endpoints as this can distort the brace.

4 Colors in mfpic. 27

4.3 Colors in mfpic.
4.3.1 Metapost color functions
Because of changes to color handling with metapost 1.000, we will have to give two de-
scriptions of some operations. For brevity, we will refer to metapost versions before the
addition of the cmykcolor data type as ‘early’ metapost and the versions afterward as ‘re-
cent’ metapost. Early metapost actually ended with version 0.642. When development
resumed, beta test versions began with 0.900. Any version 0.900 or later qualifies as ‘recent’.

In early metapost, the only color data type is a triple of numbers like (1,.5,.5),
with the components between 0 and 1, representing red, green and blue levels, respectively.
White is given by (1,1,1) and black by (0,0,0). Recent metapost has the color data
type (refered to as either color or rgbcolor) as well as the cmykcolor type. A cmykcolor is
a quadruple of numbers like (1,.2,0,.3), with components between 0 and 1 representing
levels of cyan, magenta, yellow and black. White is represented by (0,0,0,0). While black
can be obtained in several ways,(0,0,0,1) is the simplest.

Metapost also has color variables (and cmykcolor variables) and several have been pre-
defined. The colors red, green, blue, white and black are built in to metapost and are
of type rgbcolor. Colors cyan, magenta and yellow are defined by mfpic’s metapost sup-
port macros to be cmykcolor. In addition, mfpic defines grayscaleblack, grayscalewhite,
cmykblack, cmykwhite, rgbblack and rgbwhite. These give black and white in the indicated
data type (grayscale being a numeric: 0 for black, 1 for white).

All the names in the LATEX color package’s dvipsnam.def have also been predefined
by mfpic as color variable names. Since metapost allows color expressions, colors may be
added (as long as they are the same type) and multiplied by numerics. Multiplication by a
number between 0 and 1 darkens a rgbcolor, but lightens a cmykcolor.

Moreover, several metapost color functions have been defined in grafbase.mp. These
have the same names as the color models. Strictly speaking, it is never necessary to use these
in recent metapost. However, since metafont and early metapost don’t have a data type
consisting of quadruples, and metafont doesn’t have one for triples, these functions allow
the same mfpic code to be used for all three figure processors. These functions are defined
to convert to a usable data type, (which may be ignored in metafont).

cmyk(c,m,y,k)

In early metapost, this converts a cmyk color specification to metapost’s native rgb.
For example, the command cmyk(1,0,0,0) yields (0,1,1), which is the rgb equivalent of
cyan. In recent metapost this produces the cmykcolor with the given components. That is,
cmyk(1,0,0,0) simply produces .1; 0; 0; 0/, the cmyk coding for cyan.

gray(g)

In early metapost, this converts a numeric g (designating a level of gray) to the cor-
responding multiple of white: (g,g,g). In recent metapost, commands to draw paths or
pictures in a particular color will accept a numeric parameter instead of color or cmykcolor,
so in recent metapost this command simply returns the given numeric g.

named(hnamei), rgb(r,g,b)
These are essentially no-ops. However; rgb() will truncate the arguments to the 0–1

range, and set an unknown argument to 0. An unknown hnamei is converted to black (in
the appropriate color model if hnamei is an unknown color variable, otherwise rgb black).

4 Colors in mfpic. 28

RGB(R,G,B)

Converts an RGB color specification to rgb. It divides each component by 255, and
performs the same truncations as rgb(). The RGB model consists of a triple of numbers
between 0 and 255. Originally, the model required they be integers. However, since they are
converted to fractions anyway, it doesn’t matter in this command.

As an example of the use of these functions, in early metapost one could conceivable
write:

\draw[0.5*RGB(255,0,0)+0.5*cmyk(1,0,0,0)]\circle{(0,0),1}

to have a circle drawn in a color halfway between red and cyan (which turns out to be
the same as gray(0.5)). In recent metapost, however, this would be an error, as one
cannot add two different data types (rgbcolor and cmykcolor). So mfpic supplies conversion
functions.

makecmyk hclri
makergb hclri
makegray hclri

In recent metapost, the hclri can be a known color name, a constant of type numeric,
rgbcolor, or cmykcolor, or the result of a color function. Then makecmyk returns the cmykcolor
equivalent, and makergb returns the rgbcolor equivalent (a numeric hclri is interpreted as a
grayscale color). Unknown colors produce a black in the appropriate model. Then one can
use

\draw{.5*RGB(255,0,0) + .5*makergb cmyk(1,0,0,0)}\circle{(0,0),1}

If one has forgotton whether RGB returns an rgbcolor, one could write makergb RGB(255,0,0)
to be sure to get an rgbcolor.

The first two commands are never necessary in early metapost, but they are still defined:
they simply return the given color if it is a known argument of type color, or apply the
function gray() is it is numeric, and return black for an unknown name.

The last one makegray converts any color to a numeric, and then returns either that
number (recent metapost) or that multiple of white (early metapost). In metafont, all
three pass the (presumably numeric) argument hclri unchanged.

All three functions return some kind of black if hclri is not some kind of color, or has an
unknown value.

4.3.2 Establishing mfpic default colors

\drawcolor[hmodeli]{hcolorspeci}
\fillcolor[hmodeli]{hcolorspeci}
\hatchcolor[hmodeli]{hcolorspeci}
\pointcolor[hmodeli]{hcolorspeci}
\headcolor[hmodeli]{hcolorspeci}
\tlabelcolor[hmodeli]{hcolorspeci}
\backgroundcolor[hmodeli]{hcolorspeci}

These macros set the default color for various drawing elements. Any curve (with one
exception, those drawn by \plotdata), whether solid, dashed, dotted, or plotted in sym-
bols, will be in the color set by \drawcolor. Set the color used by \gfill with \fillcolor.
For all the hatching commands use \hatchcolor. For the \point, and \plotsymbol com-
mands, as well as \gridpoints and \plrgridpoints, use \pointcolor, and for arrowheads,

4 Colors in mfpic. 29

\headcolor. One can set the color used by \gclear with \backgroundcolor (the same color
will also be used in the interior of unfilled points that are drawn with \point) and, when
mplabels is in effect, the color of labels can be set with \tlabelcolor.

The optional hmodeli may be one of rgb, RGB, cmyk, gray, and named. The hcolorspeci
depends on the model, as outlined below. Each of these commands sets a corresponding
metapost color variable with the same name (except \backgroundcolor sets the color
named background). Thus, after drawcolor has been set, one can issue the command
\fillcolor{drawcolor} to fill with the same color.

As previously discussed, all these colors are initially set to black except background is
set to white.

If the optional hmodeli argument is omitted, the color specification may be any expression
recognized as a color by metapost. It is highly recommended (for portability) that one use
either a predefined name or one of the color functions of the previous section.

When the optional hmodeli is specified in the color setting commands, it determines the
format of the color specification as in figure 1.

Model: Specification:
rgb Three numbers in the range 0 to 1 separated by commas.
RGB Three numbers in the range 0 to 255 separated by commas.
cmyk Four numbers in the range 0 to 1 separated by commas.
gray One number in the range 0 to 1, with 0 indicating black, 1 white.
named A metapost color variable name either predefined by mfpic or by the user.

Figure 1: Color specifications

Mfpic translates the command:

\fillcolor[cmyk]{1,.3,0,.2}

into the equivalent of:

\fillcolor{cmyk(1,.3,0,.2)}.

Note that when the optional model is specified, the color specification must not be enclosed
in parentheses. Note also that each model name is the name of a color function described in
the previous subsection. That is how the models are implemented internally. One sees from
this that the optional argument is never necessary. It’s there only to make the LATEX user
comfortable.

4.3.3 Defining a color name

\mfpdefinecolor{hnamei}{hmodeli}{hcolorspeci}
This defines a color variable hnamei for later use, either in the commands \drawcolor,

etc., or in the optional parameters to \draw, etc. The name can be used alone or in the
named model. The mandatory hmodeli and hcolorspeci are as above.

A final caution, the colors of an mfpic figure are stored in the .mp output file, and are not
related to colors used or defined by any LATEX package (such as color or xcolor). In partic-
ular a color defined only by LATEX’s \definecolor command will remain unknown to mfpic.
Conversely, LATEX commands will not recognize any color defined only by \mfpdefinecolor.

4 Modifying the figures. 30

4.3.4 Metafont colors
Metafont was never meant to understand colors, but it certainly can be taught the differ-
ence between black and white and, to a limited extent, various grays. Starting with version
0.7, mfpic will not generate an error when a color-changing command is used under the
metafont option. Instead, when possible, the variables that represent colors in metapost
will be converted to a numeric value between 0 and 1 in metafont. When possible (for
example, when a region is filled) the numeric will be interpreted as a gray level and shading
(see subsection 4.5.2) will be used to approximate the gray. In other cases (drawing or dash-
ing of curves, placing of points or symbols, filling with a pattern of hatch lines) the number
will be interpreted as black or white: a value less than 1 will cause the figure to be rendered
in black, while a value equal to 1 (white) will cause pixels corresponding to the figure to be
erased.

This depends on adhering to certain restrictions. Metafont’s syntax does not recognize
a triple of numbers as any sort of data structure, but it does allow commands to have any
number of parameters in parentheses. So colors must be specified using the color commands
such as rgb(1,1,0) or color names such as yellow, and never as a bare triple. Also, as
currently written, the color names defined in dvipsnam.mp are not defined in metafont.
With these provisions the same mfpic code can often produce either gray scale metafont
pictures or metapost color pictures depending only on the metapost option.

The commands \shade and \gfill[gray(.75)] (see subsection 4.5.2 for their meaning)
will produce a similar shade of gray, but there is a difference. The first simply adds small dots
on top of whatever is already drawn. The second, however, tries to simulate the metapost
effect, which is to cover up whatever is previously drawn. Therefore, it first erases all affected
pixels before adding the dots to simulate gray. In particular, \gfill[white] should have
the same effect as \gclear.

4.4 Modifying the figures.
Some mfpic macros operate by modifying a figure macro: if you want to turn an open arc
into a closed figure by adding a straight line, you can write:

\lclosed\arc{(0,0),(1,0),45}.

These are always prefixed to some figure drawing command, and apply only to the next
following figure macro provided that only other prefix commands intervene. This is a rather
long section, but even more modification prefixes are documented in subsection 4.10.2.

The combination of a modifying macro, followed by a figure macro, can usually be
thought of as a new figure macro, to which further prefixes might be prepended.

More precisely: all prefix macros have an input path, an output path, and a side effect.
The input is the path that is output by the following prefix or figure macro. The output is
either the same as the input or a modification of it. The side effect might be a drawing or
filling of the path or the addition of an arrowhead.

We list here a classifications of prefix and figure macros that is useful for understanding
the mfpic system.

Figure macros. These take no input path; they must come last in a sequence. They output
the path they were designed to produce. Examples are \circle, \rect and \polygon.
If they have no prefixes, or are preceded only by appending macros (see next), they
invoke a default rendering of the path (usually a drawing as a solid stroke) as the side
effect.

4 Modifying the figures. 31

Apending macros These pass their input unchanged as their output. Their side effect
is the appending of some object such as an arrow head or tail. Currently only the
various prefix macros whose names begin with arrow are appending macros (see sub-
section 4.4.3). But \reverse, which technically modifies a path and has no side effect,
is coded as an appending macro so that it will work correctly with arrows. Think of it
as ‘appending’ a new direction.

Rendering macros These pass their input unchanged as their output. They have the side
effect of adding or subtracting ink from a picture in the shape of the input path.
Examples are \draw, \dotted, \gfill and \gclip.

Modifying macros These output the result of applying their intended modification to the
input path. Examples are macros that close the path if it was open, macros that apply
a transformation such as a rotation, and macros that return only a part of a path. If
they have no prefixes, or are preceded only by appending macros (see above), they also
invoke a default rendering of the output path (usually a drawing as a solid stroke of
the modified path) as the side effect.

4.4.1 Closure of paths
It should be pointed out that the closure macros will leave already closed paths unchanged,
so it is always safe to add one when uncertain. Moreover, if the path is not closed but
the endpoints are identical, \lclosed and \bclosed will close it without adding any path
segment.

\lclosed: : :
\bclosed[htensi]: : :
\sclosed[htensi]: : :

These modifying macros all turn an open path into a closed one. If the path is already
closed, they do nothing.

\lclosed makes an open path into a closed path by adding a line segment between the
endpoints of the path. In the special case where the path ends exactly where it begins, all
\lclosed does is change the type of the path from open to closed.

The \bclosed macro is similar to \lclosed, except that it closes an open path smoothly
by drawing a Bézier curve. A Bézier is metafont’s natural way of connecting points into a
curve, and \bclosed is the simplest and most efficient closure next to \lclosed. Moreover
it usually gives a reasonably aesthetic result. Sometimes, however, one might wish a tighter
connection. If that is the case, use the optional argument with a value of the tension htensi
greater than 1, the default. The command \settension (see subsection 4.2.5) can be used
to change the default.

\sclosed closes the curve by mimicking the definition of the \curve command. That
command tries to force the curve to pass through the nth point in a direction parallel to
the line from point .n � 1/ to point .n C 1/. In order to close a curve in this way, the
direction at the two endpoints often has to be changed, and this changes the shape of the
first and last segments of the curve. Use \bclosed if you don’t wish this to happen. However,
\sclosed\curve produces a result almost identical to \cyclic given the same points and
tension values. The optional tension argument is as in the \bclosed command.

There are two other closure commands but, because they are associated with partic-
ular types of paths (splines), we delay their discussion until those are discussed (subsec-
tion 4.12.1).

4 Modifying the figures. 32

\makesector\arc[hfmti]{hspeci}
The modifying macro \makesector can be applied to any path, but its name makes

sense (and its action is predictable) only if that path is an arc. It appends line segments
from the center of the arc’s circle to the ends of the arc, producing a closed path. It is useful
if one doesn’t know where the center of the arc is (a required parameter of \sector). It
works by selecting the first point, a middle point, and the last point of the following path,
then calculates the center of the circle through those three points.

4.4.2 Reversal, connection and other path modifications

\reverse: : :

This modifies the following path by reversing its sense. This will affect the direction
of arrows: bi-directional arrows can be coded with \arrow\reverse\arrow: : :, where the
leftmost \arrow prefix applies to the reversed path. The order of endpoints for the following
connect environment will also be affected.

\connect : : : \endconnect

The macro \connect produces a connected path by joining all the paths following it up
to the matching \endconnect command. Line segments are added from the end of one path
to the start of the next. The whole group acts as one figure macro, permitting any prefix
macros to come before.

In LATEX, instead of this pair of macros, an environment named connect may be used.
For example

\lclosed
\begin{connect}

\curve{(2,1),(1,2),(0,1)}
\polyline{(0,0),(2,0)}

\end{connect}

produces a closed figure consisting of one smooth curve and three line segments: the segment
produced by \polyline, the segment added by the connect environment, and the segment
added by \lclosed.

\partpath{hfrac1 i,hfrac2 i}. . .
\subpath{hnum1 i,hnum2 i}. . .
\trimpath{hdim1i,hdim2i}. . .
\trimpath{hdimi}. . .

These macros modify the following path by producing only a part of it. In \partpath
the parameters hfrac1 i and hfrac2 i should be numbers between 0 and 1. The path produced
travels the same course as the path that follows, but starts at the point that is the fraction
hfrac1 i of the original length along it, and ends at the point hfrac2 i of its original length.
If hfrac1 i is greater than hfrac2 i, the sense of the path is reversed. In \subpath, the two
numbers should be between 0 and the number of Bézier segments in the path. This is mainly
for experienced metafonters and provides an mfpic interface to metafont’s ‘subpath’
operation.

The \trimpath macro takes two dimensions separated by commas and trims those
lengths off the initial and terminal ends of the following path. Alternatively, it takes one
dimension and and trims that length off of both ends. If any of hdim1i, hdim2i or hdimi
is missing, it is taken to be 0pt. This works by finding the points of intersection between

4 Modifying the figures. 33

the path and circles around the endpoints with the given dimensions as radii. If the path is
shorter than either dimension, it will not intersect either circle and nothing will be trimmed.
Similar problems can occur, at one end or the other, if the path is shorter than the sum of
the dimensions.

\parallelpath{hdisti}: : :
This modifying macro takes the following path and returns a path that follows beside

it, keeping a fixed distance hdisti to the left. If hdisti is negative, it keeps to the right. Left
or right is from the point of view of a traveller following the given path from start to finish.
The distance is a pure number in graph coordinates. Note: this should be compared to the
first optional argument of \doubledraw (see subsection 4.5.1), which requires an absolute
dimension like 2pt, even though it is implemented using the internal code of \parallelpath.

The calculation of the parallel path is approximate and rather inefficient. It is likely to
produce inexplicable small loops where it tries to follow the inside of tight turns (radius less
than hdisti). Actual corners, (which might be thought of as turns of radius 0) are usually
detected and dealt with in a reasonable manner. However, if the path is made up of segments
of length hdisti or less, this is unlikely to work correctly at all.

\arccomplement. . .
This macro, to work properly, must be followed by an arc of a circle. It produces the

complementary arc. That is, it produces the circular arc, which would, if appended to the
following arc, complete the circle. The complementary arc will have the same direction,
clockwise or anticlockwise, as the original. The arc that follows doesn’t have to be produced
by \arc, as in the following example:

\draw[blue]\arccomplement
\draw[red]\partpath{0,.333}
\circle{(0,0),1}

This will draw 1/3 of the circle in red and the rest in blue.
Metafont cannot check if a path is really a circular arc. The metafont code, like that

of \makesector (see subsection 4.4.1), selects three key points on the arc, then it produces
the rest of the circle much the same way as the internal code of \arc[t] (the three point
option for \arc). Thus, it will produce some arc from the end of any following path to its
beginning (or a straight line if the three chosen points happen to lie in a straight line).
However, the result needn’t bear any significant relation to the original path.

4.4.3 Arrows

\arrow[lhheadleni][rhrotatei][bhbackseti][chcolori]: : :
\arrow*[lhheadleni][rhrotatei][bhbackseti][chcolori]: : :

This macro adds an arrowhead at the endpoint of the open path (or at the last key point
of the closed path) that follows. The optional parameter hheadleni determines the length
of the arrowhead. The default is the value of the TEX dimension \headlen, initially 3pt.
The optional parameter hrotatei allows the arrowhead to be rotated anticlockwise around its
point an angle of hrotatei degrees. The default is 0. The optional parameter hbackseti allows
the arrowhead to be ‘set back’ from its original point, thus allowing (for example) double
arrowheads. This parameter is in the form of a TEX dimension—its default value is 0pt. If
an arrowhead is both rotated and set back, it is set back in the direction after the rotation.
The optional hcolori defaults to headcolor, initially black. The optional parameters may

4 Modifying the figures. 34

appear in any order, the indicated key character determining the meaning of a parameter.
The key letter l for ‘length’ can be replaced by s for ‘size’.

There is also a star-form: If \arrow is called as \arrow*, then any part of the tip of
the following curve that lies outside the arrowhead shape is clipped off. Imagine a rectangle
with one side connecting the ends of the barbs and the opposite side passing through the
tip. Everything in that rectangle outside the arrowhead is erased, so be careful using this
(also see comments about metapost’s method of ‘erasing’ in the description of \gclear
in \subsection 4.5.2). One use of this is adding an arrowhead to a figure rendered with
\doubledraw (see the next section) or with a rather large pen diameter (see section 4.11).

For the star-form to work, the head has to be added after the path is drawn. What this
means in practice is that the \arrow* command must come before any drawing command
in the list of prefixes. This is because prefix macros add their elements to the result of
everything that follows. If you \store a curve in a path variable (see subsection 4.10.2),
and draw the path and the arrowhead in separate commands, then the arrow command
must come after the drawing command.

\arrowhead{hsymboli}[lhlengthi][rhrotatei][bhbackseti][chcolori]: : :
\arrowmid{hsymboli}[lhlengthi][rhrotatei][fhfractioni][chcolori]: : :
\arrowtail{hsymboli}[lhlengthi][rhrotatei][fhforwardi][chcolori]: : :

These macros add some sort of symbol at different locations along a path. The first
adds an arrowhead, but the head can be any appropriately designed symbol. It has been
arranged that any of the symbols usable in \plotsymbol (see subsection 4.2.1) can be used:
you can have Diamond- or Asterisk-tipped arrows. The special symbol Arrowhead produces
the same shape as the head in the \arrow command. In total eight special hsymbolsi have
been made available, intended for use with \arrowhead, \arrowmid and \arrowtail. Here
is a list and description of all these symbols.

Arrowhead The shape that would be drawn at the end of a path by \arrow.
Leftharpoon The left half of Arrowhead.
Rightharpoon The right half of Arrowhead.
Crossbar A short line crossing the path perpendicularly unless rotated.
Leftbar Essentially the left half of Crossbar.
Rightbar The right half.
Lefthook An open semicircle with its open face in the direction of the path, added to the

left side of the path.
Righthook Like Lefthook but on the right side.

Here ‘left’ and ‘right’ are from the point of view of an observer facing in the direction of the
path.

If the symbol is a closed path (see subsection 4.4.1 for the difference between a closed
path and one that merely looks closed), the head will be filled, otherwise its outline will
be drawn. Thus \arrowhead{Diamond} draws an outline, and \arrowhead{SolidDiamond}
draws a filled shape because Diamond has been left open, while SolidDiamond has been
defined to be closed.

It is possible, to get an outline drawn with the inside erased: just place the solid version
with color background (usually the same as white) and then the outline version. This
can produce a pleasing result. But recall that the prefix macro nearest the figure macro is
executed first. For example:

\arrowmid{Circle}\arrowmid{SolidCircle}[cwhite]\polyline{(0,0),(1,1)}

4 Rendering figures. 35

The symbol is always rotated so that it points in the direction of the path (for this
purpose, all symbols are initially assumed to point straight upward) before the [rhrotatei]
parameter is applied.

There is a star-form \arrowhead* that behaves like \arrow* (when possible). The op-
tional arguments are exactly as in \arrow, with the same defaults for all of them.

The second command, \arrowmid, places the symbol somewhere between the start and
the end of the path. In this case the optional parameter [fhfractioni] gives the location of
the symbol as a fraction of the length of the path. The default is [f0.5], which places it
approximately in the middle. The other optional arguments have the same meaning as for
\arrowhead. As with \arrowhead, the symbol is rotated to ‘point’ in the direction of the
path before the [rhrotatei] is applied.

The third command \arrowtail places the symbol at the start of the path. Otherwise it
behaves as the other two commands, except the option [fhforwardi] is an amount to shift
the symbol forward from that first point.

One might be tempted to use \arrowmid with the hfractioni equal to 1 or 0 to get
arrowheads or tails. This will work sometimes. However, some shapes have a ‘tip’, that is, a
particular point designated as the tip of the arrowhead. The \arrowhead and \arrowtail
commands pay attention to this, while \arrowmid does not. Also, \arrowmid has no star-
form.

You can design your own hsymboli for these commands: use \store to store a path in a
path variable (see subsection 4.10.2). These commands assume that the length is 1, that the
symbol ‘points’ up and that the ‘tip’ (the ‘pointy end’) is at .0; 0/ (unless the pair variable
hsymboli.tip is defined, in which case that is taken to be the tip). So draw your symbol
pointing up with its tip at .0; 0/ and its length equal to 1 (graph unit). For example the
following produces a solid head with a common shape:

\store{myAH}\polygon{(-.5,-1)(0,0),(0.5,-1),(0,-.7)}
\arrowhead{myAH}\arc{(-10,0),(10,0),90}

If you replace the \polygon above with \polyline:

\store{myAH}\polyline{(-.5,-1)(0,0),(0.5,-1),(0,-.7),(-.5,-1)}

the path will not be closed and so the arrowhead will not be filled in.
To make the star-form work with such self-defined symbols, one must also define a closed

path myAH.clear that gives the region to be erased. In the above example:

\store{myAH.clear}\polygon{(-.5,-1),(-.5,0),(.5,0),(.5,-1),(0,-.7)}

4.5 Rendering figures.
When mfpic is loaded, the initial way in which figures are drawn is with a solid outline.
That is, \polyline{(1,0),(1,1),(0,0)} will draw two solid lines connecting the points.
It is possible to establish a different default (see \setrender in subsection 4.5.3), however
that default is used only when no explicit rendering prefix is present. That is, when the
macros in this section are used, any previously established default is overridden.

\norender: : :

This causes the following path not to be rendered at all. This can be used to override
mfpic’s automatic rendering rules. See section 4.10.2, page 59 for an example where one
might need to do this.

4 Rendering figures. 36

4.5.1 Drawing

\draw[hcolori]: : :
Draws the subsequent path using a solid outline. For an example: to both draw a curve

and hatch its interior, \draw\hatch must be used. The default for hcolori is drawcolor.
To save repetition, the color used for the following commands is also drawcolor:

\dashed, \dotted, \doubledraw, \plot, \plotnodes, and \gendashed,

\doubledraw[hsepi][hcolori]: : :
This rendering macro draws the path with a double line. The default separation (distance

between centers of the two penstrokes) is twice the pen diameter. This normally leaves one
line thickness of white space between. You can change this with the [hsepi] argument. In
order to make the space between the lines transparent, this command is implemented by
calculating two curves that parallel the given curve and drawing those. For technical reasons,
that calculation is rather lengthy so this is somewhat inefficient and users of slow machines
might want to avoid it. See also comments at \parallelpath in subsection 4.4.2.

\dashed[hlengthi,hspacei]: : :
This rendering macro draws dashed segments along the path specified. The default length

of the dashes is the value of the TEX dimension \dashlen, initially 4pt. The default space
between the dashes is the value of the TEX dimension \dashspace, initially 4pt. The dashes
and the spaces between may be increased or decreased by as much as 1=n of their value,
where n is the number of spaces appearing in the curve, in order to have the proper dashes
at the ends. The dashes at the ends are half of \dashlen long.

\dotted[hsizei,hspacei]: : :
This rendering macro draws dots along the specified path. The default size of the dots

is the value of the TEX dimension \dotsize, initially 0.5pt. The default space between the
dots is the value of the TEX dimension \dotspace, initially 3pt. The size of the spaces may
be adjusted as in \dashed.

\plot[hsizei,hspacei]{hsymboli}: : :
Similar to \dotted, this rendering macro draws copies of hsymboli along the path. Pos-

sible symbols are those listed under \plotsymbol in subsection 4.2.1. The default hsizei is
\pointsize (initially 2pt) and the default hspacei is \symbolspace (initially 5pt).

\plotnodes[hsizei]{hsymboli}: : :
This rendering macro places a symbol at each node of the path that follows. Possi-

ble symbols are those listed under \plotsymbol in subsection 4.2.1. A node is one of the
points through which metafont draws its curve. If one of the macros \polyline{: : :}
or \curve{: : :} follows, each of the points listed is a node. In the \datafile command
(subsection 4.6.3), each of the data points in the file is a node. In the function macros (sub-
section 4.6.2) the points corresponding to hmini, hmax i and each step in between are nodes.
The optional hsizei defaults to \pointsize. If the command \clearsymbols has been issued
then the interiors of the open symbols are erased. The effect of something like the following
is rather nice:

\clearsymbols
\plotnodes{Circle}\draw\polyline{...}

4 Rendering figures. 37

This will first draw the polyline with solid lines, and then the points listed will be plotted
as open circles with the portion of the lines inside the circles erased. One sees a series of
open circles connected one to the next by line segments

\dashpattern{hnamei}{hlen1 i,hlen2 i,: : :,hlen2ki}
For more general dash patterns than \dashed and \dotted provide, mfpic offers a gen-

eralized dashing command. Before using it, one must first establish a named dashing pattern
with the above command. The hnamei can be any sequence of letters and underscores. Try
to make it distinctive to avoid undoing some internal variable. hlen1 i through hlen2ki are
an even number of lengths. The odd ones determine the lengths of dashes, the even ones
the lengths of spaces. A dash of length 0pt means a dot. An alternating dot-dash pattern
can be specified with

\dashpattern{dotdash}{0pt,4pt,3pt,4pt}

Note: Since pens have some thickness, dashes look a little longer, and spaces a little shorter,
than the numbers suggest. If one wants dashes and spaces with the same length, one needs to
take the size desired and increase the spaces by the thickness of the drawing pen (normally)
0.5pt) and decrease the dashes by the same amount.13

If \dashpattern is used with an odd number of entries, a space of length 0pt is appended.
This makes the last dash in one copy of the pattern abut the first dash in the next copy.

\gendashed{hnamei}: : :
Once a dashing pattern name has been defined, it can be used in this figure macro to

draw the curve that follows it. Using a name not previously defined will cause the curve to
be drawn with a solid line, and generate a metafont warning, but TEX will not complain.
If all the dimensions in a dash pattern are 0, \gendashed responds by drawing a solid curve.
The same is true if the pattern has only one entry.

\zigzag{hstarti,hendi,hwli,hampi}. . .
\sinewave[htensi]{hstarti,hendi,hwli,hampi}. . .

These figure macros both draw a solid line that crosses from one side of the path to the
other. The \zigzag makes a jagged result while the \sinewave makes a smooth one. The
optional argument of \sinewave is a ‘tension’ and controls how smooth the result is. The
default tension is 1. Higher values make a less smooth path, and values of 10 or so produce
a result almost indistinguishable from \zigzag. Tension is required to be greater than 3=4.

The mandatory arguments consists of four dimensions separated by a comma. The ren-
dering produced by these macros actually follow the path a little way at the start and end
of the path. This is controlled by the dimensions hstarti and hendi.

The third dimension, hwli, is the distance from one ‘peak’ to the next (the ‘wavelength’).
The second, hampi, is the maximum distance to either side of the true path (the ‘amplitude’).
Reasonable values of hwli and hampi are 8pt and 2pt, respectively. These proportions (4 to
1) causes the zigzag and the sinewave to cross the path at an angle of about 45 degrees, a
rather pleasant result. Those sizes are close to optimal: too much smaller and the rendering
just looks like a fuzzy line, too much larger, and bends in the path will distort the zigzagging.

The zigzags zig to the left first if hampi is positive, to the right if it is negative. For closed
curves, the beginning and end are constructed to meet smoothly. It is always arranged that
there are an equal number of left zigs and right zags, so the hwli is only approximate.

13Experienced metapost users could also set the linecap variable to butt.

4 Rendering figures. 38

\corkscrew[htensi]{hstarti,hendi,hwli,hampi}. . .
\coil[htensi]{hstarti,hendi,hwli,hampi}. . .

This rendering macro draws a coil or corkscrew that coils around a given path, some-
thing like this: (the red dots show the actual path). The htensi is a tension option
that controls how ‘loopy’ the result will be (the higher the number the more jagged). The
mandatory argument contains four explicit dimensions. The first two, hstarti and hendi are
as in \zigzag. The hwli is the distance from one loop to the next, and hampi is the distance
from the true path to the tops (or bottoms) of the loops. If hampi is positive, the tip of the
loop is to the left of the path, if negative it is to the right. The example at the start of this
paragraph was drawn using the following code:

\mfpic{0}{33}{0}{6.4}
\dotsize=1pt
\drawcolor{red}

\dotted\polyline{(0,3.2),(33,3.2)}
\drawcolor{black}

\coil[1.5]{3pt,3pt,4.8pt,3.2pt}\polyline{(0,3.2),(33,3.2)}
\endmfpic

4.5.2 Shading, filling, erasing, clipping, hatching
For the purposes of this section, a distinction must be made in the figure macros between
‘open’ and ‘closed’ paths. A path that merely returns to its starting point is not automati-
cally closed; such a path might be open and may need to be explicitly closed, for example
by \lclosed. The (already) closed paths are those that have ‘closed’ or ‘cyclic’ in their
name plus:

\belowfcn, \border, \btwnfcn, \btwnplrfcn, \chartbar (and its aliases),
\circle, \ellipse, \fullellipse, \levelcurve, \makesector,\piewedge,
\plrregion, \polygon, \pshcircle. \rect, \regpolygon, \sector, \tlabelcircle,
\tlabelellipse, \tlabeloval, and \tlabelrect.

The macros of this section can all be used to fill (or unfill) the interior of closed paths,
even if the paths cross themselves. Filling an open curve is technically an error, but the
metafont code responds by drawing the path and not doing any filling. Note that these
macros override the default rendering, so if you want some sort of fill pattern and an outline
drawn, you need an explicit prefix for both.

\gfill[hcolori]: : :
This rendering macro fills in the subsequent closed path. Under metapost it fills with

hcolori, which defaults to fillcolor. Under metafont it approximates the color with a
shade of gray, clears the interior, and then fills with a pattern of black and white pixels
simulating gray.

\gclear: : :

This rendering macro erases everything inside the subsequent closed path (except text
labels under some circumstances, see section 2.2 and 2.3). Under metapost it actually fills
with the predefined color named background. Since background is normally white, and so
are most actual backgrounds, this is usually indistinguishable from clearing. However, if an
mfpic environment utilzes background text (see subsection 4.7.1), part of the background
text may appear to be ‘erased’. Unfortunately, there is little that can be done about this.

4 Rendering figures. 39

\gclip: : :

This rendering macro erases everything outside the subsequent closed path from the
picture (except text labels under some circumstances, see section 2.2 and 2.3). Note that
this is a true erasing, even in metapost.

\shade[hshadespi]: : :
This rendering macro shades the interior of the subsequent closed path with dots. The

diameter of the dots is the metafont variable shadewd, set by the macro \shadewd{hsizei}.
Normally this is 0.5bp. The optional argument specifies the spacing between (the centers
of) the dots, which defaults to the TEX dimension \shadespace, initially 1pt. If shadewd
is larger than \shadespace, the closed path is filled with black, as if with \gfill. Under
metapost this macro actually fills the path’s interior with a shade of gray. The shade to use
is computed based on \shadespace and shadewd. The default values of these parameters
correspond to a gray level of about 78% of white.14 The metafont version attempts to opti-
mize the dots to the pixel grid corresponding to the printers resolution (to avoid generating
dither lines). Because this involves rounding, it will happen that values of \shadespace
that are relatively close and at the same time close to shadewd produce exactly the same
shade. Most of the time, however, values of \shadespace that differ by at least 20% will
produce different patterns. The actual behavior for particular values of the parameters and
particular printer resolutions cannot be predicted, and we even make no guarantee it will
not change from one version of mfpic to another.

\polkadot[hspacei]: : :
This rendering macro fills the interior of a closed path with large dots. This is almost

what \shade does, but there are several differences. \shade is intended solely to simulate
a gray fill in metafont where the only color is black. So it is optimized for small dots
aligned to the pixel grid (in metafont). In metapost \shade only fills with gray and is
intended merely for compatibility. The macro \polkadot is intended for large dots in any
color, and so it optimizes spacing (a nice hexagonal array) and makes no attempt to align at
the pixel level. The hspacei defaults to the TEX dimension \polkadotspace, initially 10pt.
The diameter of the dots is the value of the metafont variable polkadotwd, which can be
set with \polkadotwd{hsizei}, and is initially 5bp. The dots are colored with fillcolor.
In metafont, nonblack values of fillcolor will produce shaded dots.

\thatch[hhatchspi,hanglei][hcolori]: : :
This rendering macro fills a closed path with equally spaced parallel lines at the spec-

ified angle. The thickness of the lines is set by the macro \hatchwd. In the optional ar-
gument, hhatchspi specifies the space between lines, which defaults to the TEX dimension
\hatchspace, initially 3pt. The hanglei defaults to 0. The hcolori defaults to hatchcolor.
If \hatchspace is less than the line thickness, the closed path is filled with hcolori, as if
with \gfill. If the first optional argument appears, both parts must be present, separated
by a comma. For the color argument to be present, the other optional argument must also
be present. However, if one wishes only to override the default color one can use an empty
first optional argument (completely empty, no spaces or comma).

14If \shadewd is w and \shadespace is s, then the level of gray is 1 � .:88w=s/2, where 0 denotes black
and 1 white.

4 Rendering figures. 40

\lhatch[hhatchspi][hcolori]: : :
\rhatch[hhatchspi][hcolori]: : :
\hatch[hhatchspi][hcolori]: : :
\xhatch[hhatchspi][hcolori]: : :

These rendering macros are just \thatch with predefined values of the angle. \lhatch
fills the region with left slanted lines (from upper left to lower right). It is exactly the same
as

\thatch[hhatchspi,-45][hcolori]: : :

\rhatch draws right slanted lines (lower left to upper right). It is exactly the same as

\thatch[hhatchspi,45][hcolori]: : :

\hatch (\xhatch is a synonym) draws lines in a cross-hatched pattern. It is exactly the
same as \rhatch followed by \lhatch using the same hhatchspi and hcolori.

Hatching should normally be used very sparingly, or never if alternatives are available
(color, shading). However, hatching or polkadotting on top of another filling macro is almost
the only way to fill in two regions that automatically shows the overlap area. Hatching is at
least less garish than polkadots.

4.5.3 Changing the default rendering
Rendering is the process of converting a geometric description into a drawing. In metafont,
this means producing a bitmap (metafont stores these in picture variables), either by
stroking (drawing) a path using a particular pen), or by filling a closed path. In metapost it
means producing a PostScript description of penstrokes and fills (with possible clipping).

\setrender{hTEX commandsi}
Initially, mfpic uses the \draw command (stroking) as the default operation when a

figure is to be rendered. However, this can be changed to any combination of mfpic ren-
dering commands or indeed any TEX commands, by using the \setrender command. This
redefinition is local inside an mfpic environment, so it can be enclosed in braces to restrict
its range. Outside an mfpic environment it is a global redefinition.

For example, suppose one uses \setrender{\dashed\shade} in a mfpic environment. If
the command \circle{(0,0),1} occurs later, it will produce a shaded circle with a dashed
outline. If an explicit rendering prefix is given in a drawing command, it will override this
default.

4.5.4 Examples
It may be instructive, for the purpose of understanding the syntax of shape-modifier and
rendering prefixes, to consider two examples:

\draw\gfill[red]\lclosed\polyline{: : :}

which fills inside a polygon and draws its outline; and

\gfill[red]\lclosed\draw\polyline{: : :}

which draws all of the outline except the line segment supplied by \lclosed, then fills the
interior. Thus, in the first case the path is first defined (by \polyline), then closed, then
the resulting closed path is filled, and finally drawn. In the second case the order is: defined,
drawn, closed, filled. In particular, what is drawn in the second case is the path not yet
closed. It should also be pointed out that in the last case, the fill is placed last and will
cover half the thickness of the previously drawn outline.

4 Functions and Plotting. 41

4.6 Functions and Plotting.
In the following macros, expressions like f .x/ or g.t/ stand for any legal metafont expres-
sion, in which the only unknown variables are those indicated (x in the first case, and t in
the second).

4.6.1 Defining functions

\fdef{hfcni}{hparam1 i,hparam2 i,: : :}{hmf-expri}
Defines a metafont function hfcni of the parameters hparam1 i, hparam2 i, : : :, by the

metafont expression hmf-expri in which the only free parameters are those named. The
return type of the function is the same as the type of the expression. What is allowed
for the function name hfcni is more restrictive than metafont’s rule for variable names.
Roughly speaking, it should consist of letters and underscore characters only. (In particular,
for those that know what this means, the name should have no suffixes.) Try to make the
name distinctive to avoid redefining internal metafont commands.

The expression hmf-expri is passed directly into the corresponding metafont macro
and interpreted there, so metafont’s rules for algebraic expressions apply. If \fdef occurs
inside an mfpic environment, it is local to that environment, otherwise it is available to all
subsequent mfpic environments.

As an example, after \fdef{myfcn}{s,t}{s*t-t}, any place below where a metafont
expression is required, you can use myfcn(2,3) to mean 2*3-3 and myfcn(x,x) to mean
x*x-x.

Operations available include +, -, *, /, and ** (x**yD xy), with ‘(’ and ‘)’ for group-
ing. Functions already available include the standard metafont functions round, floor,
ceiling, abs, sqrt, sind, cosd, mlog, and mexp. Note that in metafont the operations *
and ** have the same level of precedence, so x*y**z means .xy/z . Use parentheses liberally!

(Notes: The metafont trigonometric functions sind and cosd take arguments in de-
grees; mlog(x)D 256 ln x, and mexp is its inverse.) You can also define the function hfcni by
cases, using the metafont conditional expression

if hbooleani: hexpri elseif hbooleani: : : : else: hexpri fi.

Relations available for the hbooleani part of the expression include =, <, >, <=, <> and >=.
Complicated functions can be defined by a compound expression, which is a series of

metafont statements, followed by an expression, all enclosed between begingroup and
endgroup. The \fdef command automatically supplies these grouping commands around
the definition so if the entire hmf-expri is one such compound expression the user need not
type them. Metafont functions can call metafont functions, even recursively.

Many common functions have been predefined in grafbase, which is a package of meta-
font macros that implement mfpic’s drawing. These include the rest of the trig functions
tand, cotd, secd, cscd, which take angles in degrees, plus variants sin, cos, tan, cot, sec,
and csc, which take angles in radians. Some inverse trig functions are also available, the
following produce angles in degrees: asin, acos, and atan, and the following in radians:
invsin, invcos, invtan. The exponential and hyperbolic functions: exp, sinh, cosh, tanh,
coth, sech, and csch; and some of their inverses: ln (or log), asinh, acosh, and atanh are
also defined.

There are also two conversion functions: radians(t) produces the number of radians in
t degrees and degrees(t) produces the number of degrees in t radians. In these expres-
sions the special variable pi produces � , accurate to roughly 5 decimals. (Metafont and

4 Functions and Plotting. 42

metapost provide accuracy only to ˙2�17 D ˙:76 � 10�5.)
The integer functions gcd(m,n) and lcm(m,n) produce the greatest common divisor and

least common multiple of two integers m and n.

4.6.2 Plotting functions
The plotting macros take two or more arguments. They have an optional first argument,
hspeci, which determines whether a function is drawn smooth (as a metafont Bézier curve),
or polygonal (as line segments)—if hspeci is p, the function will be polygonal. Otherwise the
hspeci should be s, followed by an optional positive number no smaller than 0.75. In this case
the function will be smooth with a tension equal to the number. See the \curve command
(subsection 4.2.5) for an explanation of tension. The default hspeci depends on the purpose
of the macro.

One compulsory argument contains three values hmini, hmax i and hstepi separated by
commas. The independent variable of a function starts at the value hmini and steps by hstepi
until reaching hmax i. If (hmax i � hmini)/hstepi is not a whole number, the nearest whole
number of equal steps are used. One may have to experiment with the size of hstepi, since
metafont merely connects the points corresponding to these steps with what it considers
to be a smooth curve. Smaller hstepi gives better accuracy, but too small may cause the
curve to exceed metafont’s capacity or slow down its processing. Increasing the tension
may help keep the curve in line, but at the expense of reduced smoothness.

There are one or more subsequent arguments, each of which is a metafont function or
expression as described above. All the macros are figure macros, defining a path to which
prefixes may be applied.

\function[hspeci]{hxmini,hxmaxi,h�xi}{f .x/}

This figure macro produces the graph of y D f .x/, where f is a metafont numeric
function or expression of one numeric argument, which must be denoted by a literal x. The
default hspeci is s. For example

\function{0,pi,pi/10}{sin x}

draws the graph of sin x between 0 and � .

\parafcn[hspeci]{htmini,htmaxi,h�ti}{(x.t/; y.t/)}
\parafcn[hspeci]{htmini,htmaxi,h�ti}{hpair-fcni}

This figure macro produces the parametric path determined by the last argument. This
can be a pair of expressions x.t/ and y.t/ enclosed in parentheses and separated by a
comma, with the literal variable t. Alternatively, the last argument can be a metafont
function or expression in t that returns a pair.15 The default hspeci is s. For example

\parafcn{0,1,.1}{(2t, t+t*t)}

plots a smooth parabola from .0; 0/ to .2; 2/.

\plrfcn[hspeci]{h�mini,h�maxi,h��i}{f .t/}

This figure macro produces the graph of the polar coordinate equation r D f .�/, where
f is a metafont numeric function or expression of one numeric argument, and � varies
from h�mini to h�maxi in steps of h��i. Each � value is interpreted as an angle measured
in degrees. In the expression f .t/, the unknown t stands for � . The default hspeci is s. For
example

15There are very few of these. Metafont provides dir t, which is essentially (cosd t, sind t). Mfpic
adds cis t which is (cos t, sin t).

4 Functions and Plotting. 43

\plrfcn{0,90,5}{sind (2t)}

draws one loop of a 4-petal rosette. Note that this function demands the variable t be in
degrees. The range and step size must be in degrees and the function must operate on the
numeric variable t in degrees. If one needs to measure angles in radians, use the conversion
functions degrees() and radians(), as follows:

\plrfcn{0,degrees(pi/2),degrees(pi/36)}{sin (radians(2t))}

\btwnfcn[hspeci]{hxmini,hxmaxi,h�xi}{f .x/}{g.x/}
\btwnplrfcn[hspeci]{h�mini,h�maxi,h��i}{f .t/}{g.t/}

These are figure macros. The first one produces a closed path surrounding the region
between the graphs of the two functions. The second one does the same for two polar
functions. That is (in both cases), the path follows the first function (in order or increasing
x or �), thence along the straight line to the end of the second one, thence backwards
along the second function (decreasing x or �) and finally along the straight line to the start.
The last two mandatory arguments, the functions, are specified exactly as in \function
and \plrfcn, being numeric functions of one numeric argument x or t. Unlike the previous
function macros, the default hspeci is p—these macros are intended to be used for shading
between drawn functions, a task for which smoothness is usually unnecessary. For example,
the first line below

\shade\btwnfcn{0,1,.1}{0}{x - x**2}
\btwnplrfcn[s]{-30,30,5}{1}{2*cosd 2t}

shades the area between the x-axis and the given parabola. The second draws the boundary
of the region between the circle r D 1 and one loop of the rosette r D 2 cos 2� .

Note: the effect of \btwnfcn could also be accomplished with
\lclosed\connect
\function{hxmini,hxmaxi,h�xi}{f .x/}
\reverse\function{hxmini,hxmaxi,h�xi}{g.x/}
\endconnect

\lclosed was described in subsection 4.4.1 and the \connect. . . \endconnect pair was
described in subsection 4.4.2.

\belowfcn[hspeci]{hxmini,hxmaxi,h�xi}{f .x/}
\plrregion[hspeci]{h�mini,h�maxi,h��i}{f .t/}

These figure macros produce identical results to \btwnfcn and \btwnplrfcn when the
first function is just 0. They are, however, much more efficient. The first of these, \belowfcn,
produces the path surrounding the region bounded by the x-axis, the graph of y D f .x/ and
the two vertical lines x D xmin and x D xmax. (The region is not actually below y D f .x/

unless f .x/ � 0 throughout the interval.) The second produces the path surrounding the
region bounded by the polar function r D f .�/ and the two rays � D �min and � D �max.

The arguments of these command are the same as the nonclosed versions, \function
and \plrfcn, except the default for the optional agument is [p]. Again, this is because it
is mainly for shading. However, drawing the boundary is often needed:

\shade\plrregion{0,90,5}{sind (2t)}
\plrregion[s]{0,90,5}{sind (2t)}

shades one loop of the 4-petal rosette, and then draws it.
The next sets of macros are similar to the previous function plotting macros, but don’t

fit the hmax i, hmini hstepi model for the first argument. For the first (\levelcurve) this is

4 Functions and Plotting. 44

a limitation of the task being performed. For the others (\DEgraph, \DEtrajectory) it is a
design choice.

\levelcurve[hspeci]{hseedi,hstepi} {hinequalityi}
This figure macro produces a level curve of some function F.x; y/. There are three

requirements on the parameters for this to work correctly. First, in order to obtain the curve
satisfying F.x; y/ D C , the {hinequalityi} must be either {F(x,y) > C} or {F(x,y) < C}.16
Second, the level curve must surround the point given by the hseedi paramter, and third,
the inequality must be true at this seed point.

The command works by searching rightward from hseedi until it encounters the first
point on the level curve. It then tries to find a nearby point on the level curve and joins it
to the first one, and continues similarly until it finds it has returned near the starting point.
The meaning of “nearby point on the level curve” is the intersection of the level curve with
a circle of radius hstepi centered at the previously found point. If the region defined by the
inequality extends beyond the bounds of the picture (as set by the \mfpic command), the
region is truncated and the resulting curve will follow along the picture’s border.

Since the algorithm only approximates the level set, a tolerance (how close the points
are to actually being on the level curve) is chosen which gives two decimal places more
accuracy than hstepi. The value of hstepi is interpreted in graph units and so should be a
pure number. The [hspeci] is either [p], in which case the calculated points are joined with
straight lines, or [shtensioni] as in \function. The default is [s]: a smooth curve with the
current default tension.

In general, choosing a hstepi that corresponds to a few millimeters works reasonably
well. For example, if the graph unit is 1cm (for example, \mfpicunit=1cm and no scaling
is used), then hstepi D 0:5 might be a reasonable first choice. If the level set is reasonably
smooth and [s] is used, then the result will match the actual curve to within .005cm, which
is approximately .14pt, which is less than half the thickness of the standard pen used to
draw it.

Be warned that there is a limit: there should not be more than 2000 steps in the completed
curve. In a figure which is 10-by-10 graph units, a level curve without too much oscillation
would probably be less than 80 units in length and a step size of .04 would probably produce
under 2000 steps. This should be accurate enough for most purposes. If you really need more,
the value of the metafont variable max_points must be changed. This can be done with
\setmfvariable (see section 4.12.4).

As a special case, if hstepi is 0, the maximum of width and height of the figure (as given
by the arguments to the mfpic environment) is divided by 100. For example, in a 5-by-10
graph, giving a step size of 0 will actually select hstepi D 10=100 D 0:1.

The algorithm used will produce imprecise results if there are two points on the curve
closer than hstepi in straight-line distance, but much further apart when measured along
the curve.

\DEgraph[hspeci]{hx0i,hy0i,h�si,hN i}{f .x; y/}
\DEtrajectory[hspeci]{hp0i,h�si,hN i}{F.x; y; t/}

The first of these plots the graph of the solution of the differential equation

dy

dx
D f .x; y/ ; y.x0/ D y0 :

16A non-strict inequality such as >= can be used, but the result will not be significantly different.

4 Functions and Plotting. 45

The h�si parameter is a step size and the hN i parameter is the number of steps. The
step size is not an increment in the x variable. Rather is is (roughly) the distance from
one point to the next along the graph as metafont computes them. That is, metafont
computes using a variable x-step �x, chosen so that

p
�x2 C�y2 is approximately h�si.

The algorithm used is a modified 4-step Ringe-Kutta method.
The second macro, \DEtrajectory draws the path traced by the solution .x.t/; y.t// of�

dx

dt
;
dy

dt

�
D F.x; y; t/ ; .x.0/; y.0// D p0 :

This is not a graph, since the dependence on t cannot be shown in two dimensions (a third
dimension would be needed). The parameter hp0i should be an ordered pair of numbers, the
h�si and hN i are as for \DEgraph. The function F.x; y; t/ should be either a pair-valued
expression or an ordered pair of numeric expressions. The variables must be literally x, y
and t. The expressions do not have to explicitly depend on these variables. In fact, the
\DEgraph macro is implemented using the same internal macro as \DEtrajectory with
F.x; y; t/ D .1; f .x; y// and p0 D .x0; y0/.

Notice that the trajectory starts at t D 0. If you need some other starting value t D a,
then replace t in the formula for F.x; y; t/ with .t C a/.

It is possible to use a negative value of �s in both these macros. For \DEgraph this
produces the graph to the left of x D x0, and for \DEtrajectory it produces the trajectory
with time running backward. For the latter, it is also equivalent to replacing F.x; y; t/ by
its negative.

The purpose of making h�si a distance rather than an x-increment or a t-increment (as
the Runge-Kutta method is taught in the usual mathematics courses) is stability: even very
simple differential equations can have graphs the tend to 1 in finite time. These macros,
however, never travel more than a distance N�s from the starting point.

If you want to use mfpic to illustrate the results of the standard Runge-Kutta method
or other methods, you can use the mfpic4ode package. That package also includes the
Euler method and the two-step Runge-Kutta method. It loads mfpic if it has not already
been loaded. Like mfpic, it works in plain TEX (with \input mfpic4ode) or LATEX (with
\usepackage{mfpic4ode}).

4.6.3 Plotting external data files

\datafile[hspeci]{hfilei}
\smoothdata[htensioni]
\unsmoothdata

The figure macro \datafile produces a curve connecting the points listed in the file
hfilei. (The context makes it clear whether this meaning of \datafile or that of subsec-
tion 4.2.2 is meant.) The hspeci may be p to produce a polygonal path, or s followed by
a tension value (as in \curve) to produce a smooth path. If no hspeci is given, the de-
fault is initially p, but \smoothdata may be used to change this. Thus, after the command
\smoothdata[htensioni] the default [hspeci] is changed to [shtensioni]. If the tension pa-
rameter is not supplied it defaults to 1.0 (or the value set by the \settension command if
one has been used).

The command \unsmoothdata restores the default [hspeci] to [p].
By default, each non-blank line in the file is assumed to contain at least two num-

bers, separated by whitespace (blanks or tabs). The first two numbers on each line are

4 Functions and Plotting. 46

assumed to represent the x- and y-coordinates of a point. Initial blank lines in the file
are ignored, as are comments. The comment character in the data file is assumed to be
%, but it can be reset using \mfpdatacomment (below). Any blank line other than at the
start of the file causes the curve to terminate. The \datafile command may be preceded
by any of the prefix commands, so that, for example, a closed curve could be formed with
\lclosed\datafile{data.dat}.

The \datafile command has another use, independent of the above description. We
saw in subsection 4.2.2 that any mfpic command (other than one that prints text labels)
that takes as its last argument a list of points (or numerical values) separated by commas,
can have that list replaced with a reference to an external data file. For example, if a file
ptlist.dat contains two or more numerical values per line separated by whitespace, then
one can draw a dot at each of the points corresponding to the first pair of numbers on each
line with the following.

\point\datafile{ptlist.dat}

In fact there is no essential difference between ‘\datafile[p]’ and ‘\polyline\datafile’,
and no difference between ‘\datafile[s]’ and ‘\curve\datafile’. Here is the full list
(omitting aliases) of mfpic macros that allow this usage of \datafile:

– Numeric data: \barchart, \dashpattern, \numericarray, \piechart, and all the
axis marks commands.

– Point or vector data: \cbeziers, \closedcbeziers, \closedcomputedspline,
\closedcspline, \closedmfbezier, \closedqbeziers, \closedqspline,
\computedspline, \convexcurve, \convexcyclic, \cspline, \curve, \cyclic,
\fcncurve, \fcnspline, \mfbezier, \periodicfcnspline, \plotsymbol, \point,
\polygon, \polyline, \putmfpimage, \qbeziers, \qspline, \turtle, and
\pairarray.

In addition \setarray and \globalsetarray (with the numeric or pair data type) allow
this usage.

\mfpdatacomment\hchari
Changes hchari to a comment character and changes the usual TEX comment character

% to an ordinary character while reading a datafile for drawing.

\using{hin-patterni}{hout-patterni}
Used to change the assumptions about the format of the data file. For example, if there

are four numbers on each line separated by commas, to plot the third against the second
(in that order) you can say \using{#1,#2,#3,#4}{(#3,#2)}. This means the following:
Everything on a line up to the first comma is assigned to parameter #1, everything from there
up to the second comma is assigned to parameter #2, etc. Everything from the third comma
to the end of line is assigned to #4. When the line is processed by TEX a metafont pair is
produced representing a point on the curve. Metafont pair expressions can be used in the
output portion of \using. For example \using{#1,#2,#3}{(#2,#1)/10} or even \using{#1
#2 #3}{polar(#1,#2)} if the data are polar coordinates. The default assumptions of the
\datafile command (numbers separated by spaces, with the first two determining the .x; y/
pair) corresponds to the following setting.

\using{#1 #2 #3}{(#1,#2)}

4 Functions and Plotting. 47

The \using command cannot normally be used in the replacement text of another command.
Or rather, it can be so used, but then each # has to be doubled. If a \using declaration
occurs in an mfpic environment it is local to that environment. Otherwise it affects all
subsequent ones.

\sequence

As a special case, you can plot any number against its sequence position, with something
like \using{#1 #2}{(\sequence,#1)}. Here, the macro \sequence will take on the values
1, 2, etc. as lines are read from the file.

\usingpairdefault
\usingnumericdefault

The command \usingpairdefault restores the above described default for pair data.
The command \usingnumericdefault is the equivalent of \using{#1 #2}{#1}, a useful
default for numeric data.

Note that the default value of \using appears to reference three arguments. If there are
only two numbers on a line separated by whitespace, this will still work because of TEX’s
argument matching rules. TEX’s file reading mechanism normally converts the EOL to a
space, but there are exceptions so mfpic internally adds a space at the end of each line
read in to be on the safe side. Then the default definition of \using reads everything up to
the first space as #1 (whitespace is normally compressed to a single space by TEX’s reading
mechanism), then everything to the second space (the one added at the end of the line,
perhaps) is #2, then everything to the EOL is #3. This might assign an empty argument to
#3, but it is discarded anyway.

If the numerical data contain percentages with explicit % signs, then choose another
comment character with \mfpdatacomment. This will change % to an ordinary character in
the data file. However, in your \using command it would still be read as a comment. The
following allows one to overcome this.

\makepercentother
\makepercentcomment

Here is an example or their use:
\makepercentother
\using{#1% #2 #3}{(#1/100,#2)}
\makepercentcomment

Here is an analysis of the meaning of this example: everything in a line, up to the first
percent followed by a space is assigned to parameter #1, everything from there to the next
space is assigned to #2 and the rest of the line (which may be empty) is #3. On the output
side in the above example, the percentage is divided by 100 to convert it to a fraction, and
plotted against the second parameter. Note: normal comments should not be used between
\makepercentother and \makepercentcomment, for obvious reasons. Moreover, the above
construction will fail inside the argument of another command.

\plotdata[hspeci]{hfilei}
This plots several curves from a single file. The hspeci and the command \smoothdata

have the same effect on each curve as in the \datafile command. The data for each curve
is a succession of nonblank lines separated from the data for the next curve by a single blank
line. A pair of successive blank lines is treated as the end of the data. No prefix macros are
permitted in front of \plotdata.

4 Functions and Plotting. 48

Each successive curve in the data file is drawn differently. By default, the first is drawn
as a solid line the next dashed, the third dotted, etc., through a total of six different line
types. A \gendashed command is used with predefined dash patterns named dashtype0
through dashtype5. This behavior can be changed with:

\coloredlines
\pointedlines
\datapointsonly
\dashedlines

The command \coloredlines causes \plotdata to use the rendering command \draw
with a color option that cycles through eight different colors starting with black (hey! black is
a color too). The command \pointedlines causes \plotdata to use the rendering command
\plot, cycling through nine symbols. The command \datapointsonly causes \plotdata
to use the rendering command \plotnodes, cycling through the same nine symbols. The
data points become the nodes of the paths created and so only the data points are plotted.
The command \dashedlines restores the default. See appendix 5.4 for the details on the
actual dash patterns, colors and symbols used.

The command \coloredlines will produce a warning under the metafont option and
substitute \dashedlines. Under themetapost option, this is the sole exception to the general
rule that all curves are drawn in drawcolor by default: the \plotdata command after
\coloredlines has been issued.

Note that mfpic always creates a path internally. It is possible that your data is not
path-like and what you want is a scatter-plot. Simply use \datapointsonly and the effect
is the same: metapost builds a polygonal path connecting all the points in your file, but
when it plots the path, it only places a dot (or other symbol) at each data point.

If, for some reason, you do not like the default starting line style (say you want to start
with a color other than black), you can use one of the following commands.

\mfplinetype{hnumi}, or
\mfplinestyle{hnumi}

Here hnumi is a non-negative number, less than the number of different drawing types
available. The four previous commands reset the number to 0, so if you use one of them,
issue \mfplinetype after it. The different line styles are numbered starting from 0. If two
or more \plotdata commands are used in the same mfpic environment, the numbering
in each continues where the one before left off (unless you issue one of the commands
above in between). \mfplinestyle means the same as \mfplinetype, and is included for
compatibility. See appendix 5.4 to find out what dash pattern, color or symbol corresponds
to each number by default. The commands below can be used to change the default dashes,
colors, or symbols.

\reconfigureplot{dashes}{hpat1i,...,hpatni}
\reconfigureplot{colors}{hclr1i,...,hclrni}
\reconfigureplot{symbols}{hsymb1i,...,hsymbni}

The first argument of \reconfigureplot is the rendering method to be changed: dashes,
colors or symbols. The second argument is a list of dash patterns, colors, or symbols.
The dash patterns should be names of patterns defined through the use of \dashpattern.
The colors can be any color names already known to metapost, or color names defined
using \mfpdefinecolor. The symbols can be any of those listed with the \plotsymbol
command (see subsection 4.2.1), or any known metafont path variable. The colors can

4 Labels and Captions. 49

also be metapost color constants or expressions, and the symbols can be expressions of
type path. In recent metapost these ‘colors’ can be numeric (selecting gray), rgbcolor or
cmykcolor. Within a mfpic environment, the changes made are local to that environment.
Outside, they affect all subsequent environments.

Using \reconfigureplot{colors} under the metafont option will have no effect, but
may produce an error from metafont unless the colors used conform to the guidelines in
subsection 4.3.4. This also holds for \defaultplot{colors} (below).

\defaultplot{dashes}
\defaultplot{colors}
\defaultplot{symbols}

The command \defaultplot restores the built-in defaults for the indicated method of
rendering in \plotdata.

The commands \using, \mfpdatacomment and \sequence have the same meaning here
(for \plotdata) as they do for \datafile (above). The sequence numbering for \sequence
starts over with each new curve.

4.7 Labels and Captions.
4.7.1 Setting text
If option metafont is in effect macros \tlabel, \tlabels, \axislabels and \tcaption do
not affect the metafont file (hfilei.mf) at all, but are added to the picture by TEX. If
metapost is in effect but mplabels is not, they do not affect the metapost file. In these
cases, if these macros are the only changes or additions to your document, there is no need
to repeat the processing with metafont or metapost nor the reprocessing with TEX in
order to complete your TEX document.

\tlabel[hjusti](hx i,hyi){hlabeltexti}
\tlabel[hjusti]{hpair-listi}{hlabel texti}
\tlabels{hparams1i hparams2i : : :}

These place TEX text or math on the graph. The special form \tlabels (note the plural)
essentially just applies \tlabel to each set of parameters listed in its argument. That is,
each hparamski is a valid set of parameters for a \tlabel command. These can be separated
by spaces, newlines, or nothing at all. They should not be separated by blank lines.

The last required parameter is ordinary TEX text. The pair (hx i,hyi) gives the coordi-
nates of a point in the graph where the text will be placed. It may optionally be enclosed in
braces, { and }. If braces are used, any number of coordinate pairs may be listed, separated
by commas. This is what is meant by hpair-listi in the above syntax. If mplabels is in effect,
the hpair-listi can be any list of expressions recognized as a pair by metapost.

The optional parameter [hjusti] specifies the justification, the relative placement of the
label with respect to the point with coordinates (hx i,hyi). It is a two-character sequence in
which the first character is one of t (top), c (center), b (bottom), or B (Baseline), to specify
vertical placement, and the second character is one of l (left), c (center), or r (right), to
specify horizontal placement. These letters specify what part of the text is to be placed at
the given point, so r puts the right end of the text there—which means the text will be
left of the point. The default justification is [Bl]: the left end of the baseline of the text is
placed at the coordinates.

When mplabels is in effect, the two characters may optionally be followed by a number,
specifying an angle in degrees to rotate the text about the point (hx i,hyi). If the angle is

4 Labels and Captions. 50

supplied without mplabels it is ignored after a warning. If the angle is absent, there is no
rotation. Note that the rotation takes place after the placement and uses the given point as
the center of rotation. For example, [cr] will place the text left of the point, while [cr180]
will rotate it around to the right side of the point (and upsidedown, of course).

There should be no spaces before, between, or after the first two characters. However the
number, if present, is only required to be a valid metapost numerical expression containing
no bracket characters; as such, it may contain some spaces (e.g., around operations as in 45
+ 30).

A multiline \tlabel may be specified by explicit line breaks, which are indicated by
the \\ command or the \cr command. This is a very rudimentary feature. By default it
left justifies the lines and causes \tlabel to redefine \\. One can center a line by putting
\hfil as the first thing in the line, and right justify by putting \hfill there (these are TEX
primitives). Redefining \\ can interfere with LATEX’s definition. For better control in LATEX
use \shortstack inside the label (or a tabular environment or some other environment
which always initializes \\ with its own definition).

If the label goes beyond the bounds of the graph in any direction, the space reserved for
the graph is expanded to make room for it. (Note: this behavior is very much different from
that of the LATEX picture environment.)

If the mplabels option is in effect, \tlabel will write a btex : : : etex group to the output
file, allowing metapost to arrange for typesetting the label. Normally, the label becomes
part of the picture, rather than being laid on top of it, and can be covered up by any filling
macros that follow, or clipped off by \gclip. However, under the overlaylabels option (or
after the command \overlaylabels), labels are saved and added to the picture at the very
end. This may prevent some special effects, but it makes the behavior of labels much more
consistent through all the 12 permissable settings of the options metapost, mplabels, clip,
and truebbox.

There is another command, \startbacktext, which also save the labels and adds them
later, but under the rest of the picture as background text. Thus, they will not be clipped,
but may be covered up. Since erasing regions with \gclear actually covers up those regions
with white, labels saved as background text may appear to have portions erased.

\everytlabel{hTEX-codei}
One problem with multiline \tlabels is that each line of their contents constitutes a

separate group. This makes it difficult to change the \baselineskip (for example) inside a
label. The command \everytlabel saves it’s contents in a token register and the code is
issued in each \tlabel, as the last thing before the actual line(s) of text. Any switch you
want to apply to every line can be supplied. For example

\everytlabel{\bf\baselineskip 10pt}

will make every line of every \tlabel’s text come out bold with 10 point baselines. The
effect of \everytlabel is local to the mfpic environment, if it is issued inside one. Note that
each line of a tlabel is wrapped in a box, but the commands of \everytlabel are outside
all of them, so no actual text should be produced by the contents of \everytlabel.

Using \tlabel without an optional argument is equivalent to specifying [Bl]. Use the
following command to change this behavior.

\tlabeljustify{hjusti}
After this command the placement of all subsequent labels without optional argument

will be as specified in this command. For example, \tlabeljustify{cr45} would cause

4 Labels and Captions. 51

all subsequent \tlabel commands lacking an optional argument to be placed as if the
argument [cr45] were used in each. If mplabels is not in effect at the time of this command,
the rotation part will be saved in case that option is turned on later, but a warning message
will be issued. If mplabels is not turned on later, that rotation will be ignored by \tlabel.

\tlabeloffset{hhleni}{hvleni}
\tlpointsep{hleni}
\tlpathsep{hleni}
\tlabelsep{hleni}

The first command causes all subsequent \tlabel commands to shift the label right by
hhleni and up by hvleni (negative lengths cause it to be shifted left and down, respectively).

The \tlpointsep command causes labels to be shifted by the given amount in a direction
that depends on the optional positioning parameter. For example, if the first letter is t the
label is shifted down by the amount hleni and if the second letter is l it is also shifted right.
In all cases it is shifted away from the point of placement (unless the dimension is negative).
If c or B is the first parameter, no vertical shift takes place, and if c is the second, there is
no horizontal shift. This is intended to be used in cases where something has been drawn at
that particular point, in order to separate the text from the drawing.

Prior to version 0.8, this separation also defined the separation between the label and
those curves designed to frame the label such as \tlabelrect (subsection 4.7.2). Now the
two separations are independent and \tlpathsep is used to set the separation between the
label and such paths.

For backward compatability, the command \tlabelsep is still available and sets both
separations to the same value.

\axislabels{haxisi}[hjusti]{{htext1i}hn1i,{htext2i}hn2i,: : :}

This command places the given TEX text (htextki) at the given positions (hnki) on the
given axis, haxisi, which must be a single letter and one of l, b, r, t, x, or y. The text is placed
as in \tlabels (including the taking into account of \tlpointsep and \tlableoffset),
except that the default justification depends on the axis (the settings of \tlabeljustify
are ignored). In the case of the border axes, the default is to place the label outside the axis
and centered. So, for example, for the bottom axis it is [tc]. The defaults for the x- and
y-axis are below and left, respectively. The optional hjusti can be used to change this. For
example, to place the labels inside the left border axis, use [cl]. If mplabels is in effect,
rotations can be included in the justification parameter. For example, to place the text
strings ‘first’, ‘second’ and ‘third’ just below the positions 1, 2 and 3 on the x-axis, rotated
so they read upwards at a 90 degree angle, one can use \axislabels{x}[cr90]{{first}1,
{second}2, {third}3}.

\plottext[hjusti]{htexti}{(x0,y0), (x1,y1), : : :}

Similar in effect to \point and \plotsymbol, \plottext places a copy of htexti at each
of the listed points. Since mfpic version 0.9, when \tlabel was enhanced to allow lists of
points, it is implemented by an equivalent \tlabel command and is only kept for backward
compatibility. It differs from \tlabel when the optional argument is absent: the default
justification is [cc] regardless of the setting of \tlabeljustify.

\mfpverbtex{hTEX-cmdsi}
This writes a verbatimtex block to the .mp file. It makes sense only if the mplabels

option is used and so only for metapost. The hTEX-cmdsi in the argument are written

4 Labels and Captions. 52

to the .mp file, preceded by the metapost command verbatimtex and followed by etex.
Line breaks within the hTEX-cmdi are preserved. There is also a linebreak between the end
of hTEX-cmdsi and the etex. The \mfpverbtex command must come before any \tlabel
that is to be affected by it. Any settings common to all mfpic environments should be in a
\mfpverbtex command preceding all such environments.

It may be issued at any point after mfpic is loaded, and any number of times. If it is
issued after \opengraphsfile, its contents are immediately written to the .mp file. If it is
issued before \opengraphsfile, its contents are saved and written when the file is opened
(successive uses being cummulative). In this case its contents will precede the boilerplate
TEX code that mfpic writes. If you wish to redefine some of that code, you need to use
\mfpverbtex after \opengraphsfile.

Because of the way metapost handles verbatimtex material, the effects cannot be
constrained by any grouping unless one places TEX grouping commands within hTEX-cmdsi.
However, mfpic itself places grouping commands into the output file at the beginning and
end of each picture, so definitions written by a \mfpverbtex are local to any picture in
which it occurs. Prior to version 0.8, mfpic did not write comments that occured within the
hTEX-cmdsi. Now they will be preserved, and can be used to place the ‘%&latex’ line that
some TEX distributions permit as a signal that latex should be run to produce the labels.

This command attempts a near-verbatim writing of the hTEX-cmdsi and, as with all
verbatim-like commands, it should not be used in the argument of another command.

\startbacktext . . . \stopbacktext
When TEX adds labels (\nomplabels) they have to be positioned either on top of a

complete figure, or placed under a complete figure. The most reasonable choice (and happily
the easiest to implement) is to put them on top. When metapost is placing labels (option
mplabel) the same can be forced with the option overlaylabels, but otherwise they are placed
as they occur, with later drawing commands perhaps putting their results on top of the
labels or clipping parts of them off.

Sometimes it is useful to place some label as a background (not on top), and yet not
have it clipped by later commands. The effect of the command \startbacktext is that
\tlabel commands are saved in a special place until the command \stopbacktext. Then,
at \endmfpic the rest of the figure is simply place on top of them. Since labels in metapost
files can only consist of characters from some font, if one wants to include a graphic in the
background (for example, via \includegraphics), one needs to switch off mplabels:

\nomplabels
\startbacktext

\tlabel[cc](0,0){\includegraphics{mygraph}}
\stopbacktext
\usemplabels

As with other labels, it is permitted to switch mplabels off and on while creating background
text. If there are both kinds of labels within the background text area the ones handled by
TEX will be further back than the ones handled by metapost. Within a given type, earlier
ones are further back than later ones.

Mfpic normally uses a naming scheme like \cmd . . . \endcmd and tries to arrange that
cmd can be used as an environment. As currently written, the extra grouping added by
\begin{cmd} and \end{cmd} would break the code that implements background text, so
we have named these in a different way to avoid suggesting this possiblity. There should

4 Labels and Captions. 53

be at most one of these pairs in any mfpic environment. It can occur anywhere in the
environment, but the two commands must not be inside any grouping.

Under the metapost option, the \gclear command doesn’t really clear a space, but
rather paints the space over with white. Any background text will not be visible through
such ‘holes’. This is a limitation of metapost.

\tcaption[hmaxwdi,hlinewdi]{hcaption texti}
Places a TEX caption at the bottom of the graph. (Not to be confused with LATEX’s

similar \caption command.) The macro will automatically break lines which are too much
wider than the graph—if the \tcaption line exceeds hmaxwdi times the width of the graph,
then lines will be broken to form lines at most hlinewdi times the width of the graph. The
default settings for hmaxwdi and hlinewdi are 1.2 and 1.0, respectively. \tcaption may
typeset its argument twice (as might LATEX’s \caption), the first time as a single line to
test its width, then again if that was too wide. Therefore, the user is advised not to include
any global assignments in the caption text.

If the \tcaption and graph have different widths, the two are centered relative to each
other. If the \tcaption takes multiple lines, then the default is to set lines both left- and
right-justified (except for the last line) with no indentation on the first line. If the option
raggedcaptions is in effect, the lines are only left-justified and ragged on the right. Finally,
if the option centeredcaptions is in effect, each line of the caption will be centered (under
raggedcaptions they will be ragged on both sides).

In a \tcaption, explicit line breaks may be specified by using the \\ command. The
separation between the bottom of the picture and the caption can be changed by increasing
or decreasing the skip \mfpiccaptionskip (a ‘rubber’ length in Lamport’s terminology).

Many mfpic users find the \tcaption command too limiting (one cannot, for example,
place the caption to the side of the figure). It is common to use some other method (such
as LATEX’s \caption command in a figure environment). The dimensions \mfpicheight
and \mfpicwidth (see section 4.11) might be a convenience for plain TEX users who want
to roll their own caption macros.

4.7.2 Curves surrounding text

\tlabelrect[hradi][hjusti]hpairi{htexti}
\tlabelrect*...

This figure macro and the following two methods of surounding a bit of text with a curve
share some common characteristics which will be described here. The commands all take
an optional argument that can modify the shape of the curve. After that come arguments
exactly as for the \tlabel command except that only a single point is permitted, not a list.
(So hpairi is either of the form (hx i,hyi) or the same enclosed in braces, or formplabels a pair
expression in braces.) After processing the surrounding curve, a \tlabel is applied to those
arguments unless a * is present. In order for the second optional argument (the optional
justification argument for the \tlabel command) to be recognized as the second, the first
optional argument must also be present. An empty first optional argument is permitted,
causing the default value to be used. The default for the justification argument is cc, for
compatibility with past mfpic versions, in which these commands all centered the figure
around the point and no justification parameter existed. This default can be changed with
the \tlpathjustify command below.

The plain rectangle version produces a frame separated from the text on all sides by the
amount defined with \tlpathsep. All other versions produce the smallest described curve

4 Saving and Reusing an mfpic Picture. 54

that contains this rectangle.
These commands may be preceded by prefix macros (see the sections 4.4 and 4.5, above).

They all have a ‘star-form’ which produces the curve but omits placing the text. All have the
effect of rendering the path before placing any text. For example, \gclear\tlabelrect. . .
will clear the rectangle and then place the following text in the cleared space.

The optional argument of \tlabelrect, hradi, is a dimension, defaulting to 0pt, that
produces rounded corners made from quarter-circles of the given radius. If the corners are
rounded, the sides are expanded slightly so the resulting shape still encompasses the rect-
angle mentioned above. There is one special case for the optional argument hradi: if the
keyword ‘roundends’ is used instead of a dimension, the radius will be chosen to make the
nearest quarter circles just meet, so the narrow side of the rectangle is a half circle.

\tlabeloval[hmulti][hjusti]hpairi{htexti}
\tlabeloval*...

This figure macro is similar to \tlabelrect, except it produces an ellipse. The ellipse is
calculated to have the same ratio of width to height as the rectangle mentioned above. The
optional hmulti is a multiplier that increases or decreases this ratio. Values of hmulti larger
than 1 increase the width and decrease the height.

\tlabelellipse[hratioi][hjusti]hpairi{htexti}
\tlabelellipse*...
\tlabelcircle[hjusti]hpairi{htexti}
\tlabelcircle*...

This figure macro produces the smallest ellipse centered at the point that encompasses
the rectangle defined above, and that has a ratio of width to height equal to hratioi, then
places the text. The default ratio is 1, which produces a circle. We also provide the command
\tlabelcircle, which takes only the [hjusti] optional argument. Internally, it just processes
any * and calls \tlabelellipse with parameter 1.

In the above \tlabel... curves, the optional parameter should be positive. If it is zero,
all the curves silently revert to \tlabelrect. If it is negative, it is silently accepted. In the
case of \tlabelrect this causes the quarter-circles at the corners to be indented rather than
convex. In the other cases, there is no visible effect, but in all cases the sense of the curve
is reversed.

\tlpathjustify{hjusti}
This can be used to change the default justification for \tlabelrect and friends. The

hjusti parameter is exactly as in \tlabeljustify in subsection 4.7.1.

4.8 Saving and Reusing an mfpic Picture.
These commands have been changed from versions prior to 0.3.14 in order to behave more
like the LATEX’s \savebox, and also to allow the reuse of an allocated box. Past files that
use \savepic will have to be edited to add \newsavepic commands that allocate the TEX
boxes.

\newsavepic{hpicnamei}
\savepic{hpicnamei}
\usepic{hpicnamei}

\newsavepic allocates a box (like LATEX’s \newsavebox) in which to save a picture. As
in \newsavebox, hpicnamei is a control sequence. Example: \newsavepic{\foo}. In a LATEX

4 Picture Frames. 55

document, \newsavepic is actually defined to be \newsavebox.
\savepic saves the next \mfpic picture in the named box, which should have been

previously allocated with \newsavepic. (This command should not be used inside an mfpic
environment.) The next picture will not be placed, but saved in the box for later use. This
is primarily intended as a convenience. One could use

\savebox{hpicnamei}{hentire mfpic environmenti},

but \savepic avoids having to place the mfpic environment in braces, and avoids one extra
level of TEX grouping. It also avoids reading the entire mfpic environment as a parameter,
which would nullify mfpic’s efforts to preserve line breaks in parameters written to the
metafont output file. If you repeat \savepic with the same hpicnamei, the old contents
are replaced with the next picture.

\usepic copies the picture that had been saved in the named box. This may be repeated
as often as liked to create multiple copies of one picture. The \usepic command is essentially
a clone of the LATEX \usebox command. Since the contents of the saved picture are only
defined during the TEX run, \usebox cannot be used in the TEX-commands argument of
the \tlabel command while mplabels is in effect.

4.9 Picture Frames.
When TEX is run but before metafont or metapost has been run on the output file, mfpic
detects that the .tfm file is missing or that the first metapost figure file hfilei.1 is missing.
In these cases, the mfpic environment draws only a rectangular frame with dimensions equal
to the nominal size of the picture, containing the figure number (and any text placed by
\tlabel and its relatives without mplabels in effect). The command(s) used internally to do
this are made available to the user.

\mfpframe[hfsepi]h material-to-be-framed i\endmfpframe
\mfpframed[hfsepi]{hmaterial-to-be-framedi}

These commands surround their contents with a rectangular frame consisting of lines
with thickness \mfpframethickness separated from the contents by the hfsepi if specified,
otherwise by the value of the dimension \mfpframesep. The default value of the TEX di-
mensions \mfpframesep and \mfpframethickness are 2pt and 0.4pt, respectively. The
\mfpframe : : : \endmfpframe version is preferred around mfpic environments or verba-
tim material since it avoids reading the enclosed material before appropriate \catcode
changes go into effect. In LATEX, one can also use environment syntax: \begin{mfpframe}
: : : \end{mfpframe}.

An alternative way to frame mfpic pictures is to save them with \savepic (see previous
section) and issue a corresponding \usepic command inside any framing environment or
command of the user’s choice or devising.

4.10 Affine Transforms.
Coordinate transformations that keep parallel lines in parallel are called affine transforms.
These include translation, rotation, reflection, scaling and skewing (slanting). For the meta-
font coordinate system only (that is, for paths, but not for \tlabel nor \tcaption) mfpic
provides the ability to apply metafont affine transforms.

4 Affine Transforms. 56

4.10.1 Transforming the metafont coordinate system

\coords . . . \endcoords
All affine transforms are restricted to the innermost enclosing \coords: : :\endcoords

pair. If there is no such enclosure, then the transforms will apply to the rest of the mfpic
environment. In LATEX, one can use the environment named coords.

Transforms provided by mfpic:

\rotate{h�i} Rotate around origin by h�i degrees.
\rotatearound{hpi}{h�i} Rotate around point hpi by h�i degrees.
\turn[hpi]{h�i} Rotate around point hpi (origin is default) by h�i.
\reflectabout{hp1i}{hp1i} Reflect in the line through points hp1i and hp2i.
\mirror{hp1i}{hp2i} Same as \reflectabout.
\shift{hvi} Shift origin by the vector hvi.
\scale{hsi} Scale uniformly by a factor of hsi.
\xscale{hsi} Scale only the x coordinates by a factor of hsi.
\yscale{hsi} Scale only the y coordinates by a factor of hsi.
\zscale{hpairi} Scale by the length of vector hvi, and rotate by its angle.
\xslant{hsi} Skew in x direction by the multiple hsi of y.
\yslant{hsi} Skew in y direction by the multiple hsi of x.
\zslant{hpairi} See zslanted in grafbase.dtx.
\boost{h�i} Special relativity boost by �, see boost in grafbase.dtx.
\xyswap Exchange the values of x and y.
\applyT{htransformeri} Apply the htransformeri.

\applyT is for metafont hackers. Any code is permitted that satisfies metafont’s
syntax for a htransformeri (see D. E. Knuth, “The metafontbook”, page 73), although no
effort is made to correctly write TEX special characters nor to preserve linebreaks in the
code.

When any of these commands is issued, the effect is to transform all subsequent figures
(within the enclosing coords or mfpic environment). In particular, attention may need to be
paid to whether these transformations move (part of) the figure outside the space allotted
by the \mfpic command parameters.

A not-so-obvious point is that if several of these transformations are applied in succession,
then the most recent is applied first, so that figures are transformed as if the transformations
were applied in the reverse order of their occurrence. This is similar to the application of
prefix macros (as well as application of transformations in mathematics: ST z usually means
to apply S to the result of T z).

Finally, some of these may not produce what the unwary user might expect if the mfpic
environment was started with unequal scaling. For example, in such a case a rotated rectangle
will not have right angles unless the rotation is by a multiple of 90 degrees. The reason for
this: the scaling given by the \mfpic command is applied last and slanted lines subjected
to unequal horizontal and verical scaling will change have their angles changed.

4.10.2 Transforming paths
In the previous section we discussed transformations of the metafont coordinate system.
Those macros affect the drawing of paths and other figures, but do not change the actual
paths. We will explain the distinction after introducing two macros for storing and reusing
figures.

4 Affine Transforms. 57

\store{hpath variablei}{hpathi}
\store{hpath variablei}hpathi

This stores the following hpathi in the specified metafont hpath variablei. Any valid
metafont symbolic token will do, in particular, any sequence of letters and underscores.
You should be careful to make the name distinctive to avoid overwriting the definition of
some internal variable. The stored path may later be used as a figure macro using \mfobj
(below). The hpathi may be any of the figure macros (such as \curve{(0,0),(1,0),(1,1)})
or the result of modifying it. For example:

\store{pth}\lclosed\reverse\curve{(0,0),(1,0),(1,1)}

In fact, \store is a prefix macro that does nothing to the following curve except store
it. It acts as a rendering macro with a null rendering, so the curve is not made visible
unless other rendering macros appear before or after it. It allows the following path to be an
argument, that is, enclosed in braces. This is solely to support files written for past mfpic
versions in which \store was not defined as a prefix macro.

One use of \store is to create a shorthand for a path that is otherwise long and tedious
to type. Another is to create ‘symbols’ or ‘arrowheads’ for use in \plotsymbol, \arrowhead
and related commands.

\mfobj{hpath expressioni}
\mpobj{hpath expressioni}

This figure macro produces the path represented by hpath expressioni, which is either
a path variable in which a path was previously stored, or a valid metafont expression
combining such variables and constant paths. This allows the use of path variables or ex-
pressions as figure macros, permitting all prefix operations, etc.. Here are some examples of
the use of \store and \mfobj.

\store{my_f}{\cyclic{...}} % Store a closed curve.
\dotted\mfobj{my_f} % Now draw it dotted,
\hatch\mfobj{my_f} % and hatch its interior
% Create two symbols
% one outline:
\store{MyTriang}{\polyline{(-.5,-.5),(.5,-.5),(0,.5),(-.5,-.5)}
% one solid:
\store{MySolidTriang}\polygon{(-.5,-.5),(.5,-.5),(0,.5)}
% Use them as symbols:
\plotsymbols{MyTriang}{(0,0),(2,2)}
\arrowmid{MySolidTriang}\polyline{(1,1),(0,2)}

Note: If a stored path has the same starting point as ending point, but is not closed
then it will behave like Circle (for example) when used in \plotsymbol: only its outline is
drawn, and its interior is erased when clearsymbols is in effect. If a closed path is stored, it
behaves like SolidCircle: it is not drawn, but rather filled. If a path is stored that satisfies
neither, it behaves like Asterisk, being simply drawn in all circumstances.

The two forms \mfobj and \mpobj are absolutely equivalent; they differ only in spelling.
It should be noted that every mfpic figure is implicitly stored in the object curpath.

So you can use \mfobj{curpath} and get the path defined by the most recently completed
figure macro (possibly modified by prefixes).

Getting back to coordinate transforms, if one changes the coordinate system and then
stores and draws a curve, say by

4 Affine Transforms. 58

\coords
\rotate{45 deg}
\store{xx}{\rect{(0,0),(1,1)}}
\dashed\mfobj{xx}

\endcoords

one will get a transformed picture, but the object \mfobj{xx} will contain the simple,
unrotated rectangular path and drawing it later (outside the coords environment) will
prove that. This is because the coords environment works at the drawing level, not at the
definition level.

In oversimplified terms, \dashed invokes the transformation, but not \store. More pre-
cisely, the rendering macros have the side effect of adding ink to the page (or subtracting
it). To know where to place this ink, a calculation is performed that translates graph coor-
dinates to actual positions. The above transforms work by modify the parameters used in
that calculation. On the other hand, \store merely stores the output of the immediately
following prefix or figure macro. See the beginning of section 4.4 for a discussion of input,
output and side effects of mfpic prefix and figure macros.

The following transformation prefixes provide a means of actually creating and storing
a transformed path. In the terms just discussed, their input is a path, their output is the
transformed path, and they have no side effects.

\rotatepath{hpi,h�i}: : :
\shiftpath{hvi}: : :
\scalepath{hpi,hsi}: : :
\xscalepath{hx i,hsi}: : :
\yscalepath{hyi,hsi}: : :
\slantpath{hyi,hsi}: : :
\xslantpath{hyi,hsi}: : :
\yslantpath{hx i,hsi}: : :
\reflectpath{hp1i,hp2i}: : :
\xyswappath: : :
\transformpath{htransformeri}: : :

These are modifying macros that all return the result of applying an affine transformation
to the following path. They differ in the transformation applied and the data needed in
the mandatory argument. I have found them extremely useful, and better than coords
environments when I need to draw a figure, together with several slightly different versions
of it. If \store is used just before one of these prefixes, it stores the transformed path rather
than the original.

\rotatepath rotates the following path by h�i degrees about point hpi.
\shiftpath shifts the following path by the vector hvi.
\scalepath scales (magnifies or shrinks) the following path by the factor hsi, in such a

way that the point hpi is kept fixed. That is

\scalepath{(0,0),2}\rect{(0,0),(1,1)}

is essentially the same as \rect{(0,0),(2,2)}, while

\scalepath{(1,1),2}\rect{(0,0),(1,1)}

is the same as \rect{(-1,-1),(1,1)}. In both cases the rectangle is doubled in size. In the
first case the lower left corner stays the same, while in the second case the the upper right
corner stays the same.

4 Affine Transforms. 59

\xscalepath is similar to \scalepath, but only the x-direction is scaled, and all points
with first coordinate equal to hx i remain fixed. \yscalepath is similar, except the y-direction
is affected.

\slantpath applies a slant transformation to the following path, keeping points with
second coordinate equal to hyi fixed. That is, a point p on the path is moved right by an
amount proportional to the height of p above the line y D hyi, with s being the proportion-
ality factor. Points below that line move left. Vertical lines in the path will acquire a slope
of 1=s, while horizontal lines stay horizontal.

\xslantpath is an alias for \slantpath
\yslantpath is similar to \xslantpath, but exchanges the roles of x and y coordinates.
\reflectpath returns the mirror image of the following path, where the line determined

by the points hp1i and hp2i is the mirror.
\xyswappath returns the path with the roles of x and y exchanged. This is similar in

some respects to \reflectpath{(0,0),(1,1)}, and produces the same result if the x and
y scales of the picture are the same. However, \reflectpath compensates for such different
scales (so the path shape remains the same), while \xyswappath does not. However, after a
swap, verticals become horizontal and horizontals become vertical. (It is impossible, when the
scales are different, for an affine transform to both preserve shape and exchange horizontal
and vertical lines.)

This compensation for different scales is also done for \rotatepath, so the resulting path
always has the same shape after the rotation as before. None of the other path transformation
prefixes compensate for different scales, and none of the coordinate system transformations
of the previous subsection do it.

For metafont or metapost power users, \transformpath can take any ‘transformer’
and transform the following path with it. Here, a transformer is the same as in the previous
section. Examples are scaled, shifted(1,1), and rotatedabout(0,1). Note that using
this last transformer with \transformpath is almost like \rotatepath{(0,1)}, but it does
not compensate for different scales.

All these prefixes change only the path that follows, not any rendering of it that follows.
For example:

\gfill\rotatepath{(0,0),90}\dashed\rect{(0,0),(1,1)}

will not produce a rotated dashed rectangle. Rather the original rectangle will be dashed,
and the rotated rectangle will be filled.

One complication is the handling of the default rendering. One expects
\rect{(0,0),(1,1)}

to draw a rectangle, and
\rotatepath{(0,0),45}\rect{(0,0),(1,1)}

to draw a rotated rectangle (but not the original). That is, a transformation + figure is
treated as if it were a single figure. But what would one expect in the following?

\rotatepath{(0,0),45}\dashed\rect{(0,0),(1,1)}

What one will get is the original dashed and the rotated one with the default rendering
(typically drawn with solid lines). That is, these prefixes cannot see the renderings that occur
later in the sequence. They add the default rendering as if those didn’t exist. If something
other than this is desired, one can either rearrange the prefixes or add a \norender in
appropriate places. For example, to add a shifted arrowhead without drawing the shifted
path:

\arrow\norender\shiftpath{(0,1)}\arrow\draw\lines{(0,0),(8,8)}

4 Parameters. 60

4.11 Parameters.
There are many parameters in mfpic which the user can modify to obtain different effects,
such as different arrowhead size or shape. Most of these parameters have been described
already in the context of macros they modify, but they are all described together here.

Many of the parameters are stored by TEX as dimensions, and so are available even if
there is no metafont file open; changes to them are not subject to the usual TEX rules
of scope however: they are local only to mfpic environments if set inside one, otherwise
they are global. This is for consistency: other parameters are stored by metafont (so the
macros to change them will have no effect unless a metafont file is open) and the changes
are subject to metafont’s rules of scope—to the mfpic user, this means that changes
inside the \mfpic : : : \endmfpic environment are local to that environment, but other TEX
groupings have no effect on scope. Some commands (notably those that set the axismargins
and \tlabel parameters) change both TEX parameters and metafont parameters, and it
is important to keep them consistent.

There are a few parameters that do obey TEX grouping, but only inside mfpic environ-
ments. These are noted where the parameter is described.

All parameters are initialized when mfpic is loaded. We give the initial value or state in
each of these descriptions.

\mfpicunit

This dimension stores the basic unit length for mfpic pictures. The x and y scales in
the \mfpic macro are multiples of this unit. The initial value is 1pt. It is global outside an
mfpic environment. Changes made to it inside an mfpic environment have no effect and are
lost at the end of the environment.

\pointsize

This dimension stores the diameter of the circle drawn by the \point macro and the
diameter of the symbols drawn by \plot, \plotsymbol and \plotnodes. The initial value
is 2pt.

\pointfilltrue, \pointfillfalse
This TEX boolean switch determines whether the circle drawn by \point will be filled

or open (outline drawn, inside erased). The initial state is true: filled. This value is local to
any TEX group inside an mfpic environment. Outside such it is global.

\pen{hsizei}
\drawpen{hsizei}
\penwd{hsizei}

These commands establishes the width of the normal drawing pen (that is, the thickness
of lines, whether solid or dashed). The initial value is 0.5bp. This width is stored by meta-
font. This has no effect on the size of dots for \dotted, \shade, \grid, etc. It also has no
effect on the lines drawn for hatching. There exist three aliases for this command, the first
two to maintain backward compatibility, the last one for consistency with other dimension
changing commands. Publishers generally recommended authors to use at least a width of
one-half point for drawings submitted for publication.

\shadewd{hdiami}
This command sets the diameter of the dots used in the shading macro. The drawing

and hatching pens are unaffected by this. The initial value is 0.5bp, and the value is stored

4 Parameters. 61

by metafont.

\hatchwd{hsizei}
This sets the line thickness used in the hatching macros. The drawing pen and shading

dots are unaffected by this. The initial value is 0.5bp, and the value is stored by metafont.

\polkadotwd{hdiami}
This sets the diameter of the dots used in the \polkadot macro. The initial value is 5bp,

and the value is stored by metafont.

\headlen

This dimension stores the length of the arrowhead drawn by the \arrow macro. The
initial value is 3pt.

\axisheadlen

This dimension stores the length of the arrowhead drawn by the \axes, \xaxis and
\yaxis macros, and by the macros \axis and \doaxes when applied to the parameters x
and y. The initial value is 5pt.

\sideheadlen

This dimension stores the length of the arrowhead drawn by the \axis and \doaxes
macros when applied to l, b, r or t. The initial value is 0pt (that is, the default is not to
put arrowheads on border axes).

\headshape{hratioi}{htensioni}{hfilledi}
This establishes the shape of the Arrowhead drawn by the \arrow... and \axes macros.

It also establishes the shape of Leftharpoon and Rightharpoon. The value of hratioi is the
ratio of the width of the arrowhead to its length; htensioni is the tension of the Bézier
curves; and hfilledi is a metafont boolean value indicating whether the arrowheads are
to be filled (if true) or open. The initial values are 1, 1, and false, respectively. Setting
htensioni to the literal keyword ‘infinity’ will make the sides of the arrowheads straight
lines. The harpoon heads are arranged to be exactly half of the full arrowhead. The hratioi,
htensioni and hfilledi values are stored by metafont.

After \headshape is used, the symbols Arrowhead, Leftharpoon, and Rightharpoon
take on the new shape if used in one of the \plot... commands.

\dashlen, \dashspace
These dimensions store, respectively, the length of dashes and the length of spaces be-

tween dashes, for lines drawn by the \dashed macro. The \dashed macro may adjust the
dashes and the spaces between by as much as 1=n of their value, where n is the number of
spaces appearing in the curve, in order not to have partial dashes at the ends. The initial
values are both 4pt. The dashes will actually be longer (and the spaces shorter) by the
thickness of the pen used when they are drawn.

\dashlineset, \dotlineset
These macros provide shorthands for certain settings of the \dashlen and \dashspace

dimensions. The macro \dashlineset sets both values to 4pt, while \dotlineset sets
\dashlen to 1pt and \dashspace to 2pt. They are kept mainly for backward compatibility.

4 Parameters. 62

\hashlen

This dimension stores the length of the axis hash marks drawn by the \xmarks and
\ymarks macros. The initial value is 4pt.

\shadespace

This dimension establishes the spacing between dots drawn by the \shade macro. The
initial value is 1pt.

\darkershade, \lightershade
These macros both multiply the \shadespace dimension by constant factors, 5=6 D

:833333 and 6=5 D 1:2 respectively, to provide convenient standard settings for several
levels of shading. Under metafont it is possible that using one of these macros can have
no visible effect. See the discussion of the \shade macro in subsection 4.5.2.

\polkadotspace

This dimension establishes the spacing between the centers of the dots used for the macro
\polkadot. The initial value is 10pt.

\dotsize, \dotspace
These TEX dimensions establishes the size and spacing between the centers of the dots

used in the \dotted macro. The initial values are 0.5pt and 3pt.

\griddotsize

This dimension gives the default sizes of dots in the \grid and \plrgridpoints com-
mands. The initial value is 0.5pt

\symbolspace

Similar to \dotspace, this TEX dimension establishes the space between the centers of
symbols placed by the macro \plot{hsymboli}: : : . Its initial value is 5pt.

\hatchspace

This dimension establishes the spacing between lines drawn by the \hatch macro. The
initial value is 3pt.

\tlpointsep{hseparationi}
\tlpathsep{hseparationi}
\tlabelsep{hseparationi}

The first macro establishes the separation between a label and its nominal position.
It affects text written with any of the commands \tlabel, \tlabels, \axislabels or
\plottext. The second sets the separation between the text and the curve defined by the
commands \tlabelrect, \tlabeloval or \tlabelellipse. The third sets both of these
separations to the same value. It is for backward compatibility: in the past there was only
one dimension used for both purposes. The initial value of each is 0pt. The values are stored
by both TEX and metafont.

\tlabeloffset{hhleni}{hvleni}
This macro establishes a uniform offset that applies to all labels. It affects text written

with any of the commands \tlabel, \tlabels, \axislabels or \plottext. The initial state

4 For Advanced Users. 63

is to have both horizontal and vertical offsets of 0pt. The values are stored by both TEX
and metafont.

\mfpdataperline

When mfpic is reading from data files and writing to the output file, this macro stores
the maximum number of data points that will be written on a single line in the output
file. Its initial definition is \def\mfpdataperline{5}. Any such definition (or redefinition)
obeys all TEX groupings.

\mfpicheight, \mfpicwidth
These dimensions store the height and width of the figure created by the most recently

completed mfpic environment. This might perhaps be of interest to hackers or to aid in
precise positioning of the graphics. They are meant to be read-only: the \endmfpic command
globally sets them equal to the height and width of the picture, but mfpic does not otherwise
make any use of them. As they are not to be changed, grouping is irrelevent, but when mfpic
sets them, it does so globally. These are set even if the picture is saved with \savepic. If they
are needed for the corresponding \usepic, and that occurs after another mfpic environment,
they should be copied to other length commands right after the mfpic environment that set
them.

\mfpiccaptionskip

This skip register (‘rubber length’ in LATEX) stores the space between a picture and the
caption produced with \tcaption. It is local to all TEX groups. If changed inside an mfpic
environment it will affect only the \tcaption command in that picture. It’s initial setting
is \medskipamount, producing the same space as a \medskip.

4.12 For Advanced Users.
4.12.1 Splines

\qspline{hlisti}
\closedqspline{hlisti}
\cspline{hlisti}
\closedcspline{hlisti}

These figure macros use alternative ways of defining curves. In each case, hlisti is a comma
separated list of ordered pairs. These represent not the points the curve passes through, but
the control points. The first two produce quadratic B-splines and the last two produce cubic
B-splines. If you don’t know what B-splines are, or don’t know what control points are, it
is recommended you not use these commands.

For \qspline, the curve will pass through the midpoints of the line segments joining the
points in the list, tangent to that line segment.

For the \cspline, the list also defines line segments. Divide these into equal thirds at
two points on each segment. Connect these division points only to obtain line segments.
Each odd numbered segment is the middle third of one of the original line segments. The
\cspline curve passes through the midpoint of each even numbered line segment, tangent
to it.

4 For Advanced Users. 64

\computedspline{hlisti}
\closedcomputedspline{hlisti}

These figure macros both produce cubic splines. For these you do provide the list of
points the curves are to pass through. They become the nodes, and then the control points
are computed from them. The nodes do not uniquely determine the control points so extra
equations are required. For the first version, the extra equations give the path zero curvature
at the endpoints (a relaxed spline). For the closed version, the extra equations are those that
close the curve smoothly. The portions of the spline that connect one node to the next are
parametrized cubic B/’eziers, they are computed so that the first and second derivatives
(with respect to the parameter) of adjacent curves match at the common node.

\fcnspline{hlisti}
\periodicfcnspline{hlisti}

These figure macros use cubic spline equations (as in \computedspline above) to pro-
duce a smooth graph of a function based on a list of points with increasing x-values. See
\fcncurve in section 4.2.5 for another way to do this. As in the computed splines, above,
the spline equations at the nodes do not provide sufficient information to compute all con-
trol points. In the basic version, \fcnspline, extra equations produce a graph with zero
curvature at the endpoints (a relaxed spline), while the periodic version uses equations that
make the first and second derivatives at the last point match those at the first point.

\cbclosed: : :
\qbclosed: : :

These are modifying macros that close the following path. The first closes with a cubic
B-spline, the second with a quadratic B-spline. They will close any given curve, but the com-
mand \cbclosed is meant to close a cubic B-spline (see above). That is, \cbclosed\cspline
should produce the same result as \closedcspline with the same argument. The corre-
sponding statements are true of \qbclosed: it is meant to close a quadratic B-spline and
\qbclosed\qspline should produce the same result as \closedqspline with the same
argument.

4.12.2 Béziers
The power user, having noticed that \curve and \cyclic insert some direction modifiers
into the path created, may have decided that there is no mfpic command to create a simple
metafont default style path, for example (1,1)..(0,1)..(0,0)..cycle. If so, he or she
has forgotten about \mfobj: the command

\mfobj{(1,1)..(0,1)..(0,0)..cycle}

will produce, in the .mf file, exactly this path, but surround it with the TEX wrapping needed
to make mfpic’s prefix macro system work. However, the syntax of more complicated paths
can be extremely lengthy, so we offer this interface:

\mfbezier[htensi]{hlisti}
\closedmfbezier[htensi]{hlisti}

These figure macros uses the metafont path join operator ‘..tension htensi..’ to
connect the points in the list. If the tension option [htensi] is omitted, the value set by
\settension (initially 1) is used. One can get a cyclic path by prepending \bclosed (with
matching tension option), but it will not produce the same result as \closedmfbezier.
These are cubic Bézier’s (but you know that if you are a power user). Quadratic Béziers (as
in LATEX’s picture environment) can be obtained with the following:

4 For Advanced Users. 65

\qbeziers{hlisti}
\closedqbeziers{hlisti}

These figure macros produce quadratic Bézier curves, the equivalent of a sequence of
LATEX \qbezier commands. Note the plural forms, to distinguish the first from the LATEX
command, and to indicate that they can draw a series of quadratic Béziers.

In the hlisti, the first, third, fifth, etc., are the points to connect, while the second, fourth,
etc., are the control points. The open version requires an ending point, and so needs an odd
number of points in the list. The closed version assumes the first point is the ending, and so
requires an even number in the list. If the number of ponts is wrong, no error is produced:
the last point is simply repeated to get the required number.

The curve will not automatically be smooth; that depends on the choice of the control
points.

\cbeziers{hlisti}
\closedcbeziers{hlisti}

These figure macros produce a series of cubic Bézier curves. In the hlisti, the first, fourth,
seventh, etc., are the points to connect, while the second and third, fifth and sixth, etc., are
pairs of control points. The closed version uses the starting point as the ending point, and
so needs a number of points divisible by 3 (n D 3k). The open version requires an explicitly
given ending node (so n D 3k C 1). If the number of ponts is wrong, no error is produced:
the last point or last two points are simply repeated to get the required number.

The curves will not automatically be smooth; that depends on the choice of the control
points. Cubic Béziers are how curves are represented in PostScript files, and how a number
of vector drawing programs represent curves.

4.12.3 Raw metafont code

\mfsrc{hmetafont codei}
\mfcmd{hmetafont codei}
\mflist{hmetafont codei}

These all write the hmetafont codei directly to the metafont file, using a TEX \write
command. Line breaks within hmetafont codei are preserved.17 Almost all the mfpic drawing
macros invoke one of these. Because of the way TEX reads and processes macro arguments,
not all drawing macros preserve line breaks (nor do they all need to). However, the ones
that operate on long lists of pair or numeric data (for example, \point, \curve, etc.), do
preserve line breaks in that data. The difference in these is minor: \mfsrc writes its argument
without change, \mfcmd appends a semicolon (‘;’) to the code, while \mflist surrounds its
argument with parentheses and then appends a semicolon.

Using these can have some rather bizarre consequences, though, so it is not recommended
to the unwary. It is, however, currently the only way to make use of metafont’s equation
solving ability. Here’s an oversimplified example:

\mfpic[20]{-0.5}{1.5}{0}{1.5}
\mfsrc{z1=(0,0);

z2-z3=(1,2);
z2+2z3=(1,-1);} % z2=(1,1), z3=(0,-1)

\arc[t]{z1,z2,z3}
\endmfpic

17Under most circumstances, but not if the command (plus its argument) is part of the argument of
another macro.

4 For Advanced Users. 66

Check out the sample forfun.tex for a more extensive example. It should produce the
word ‘mfpic’ in blue, outlined in green in a box with yellow background.

4.12.4 Creating metafont variables

\setmfvariable{htypei}{hnamei}{hvaluei}
\setmpvariable{htypei}{hnamei}{hvaluei}
\globalsetmfvariable{htypei}{hnamei}{hvaluei}
\globalsetmpvariable{htypei}{hnamei}{hvaluei}
\setmfnumeric{hnamei}{hvaluei}
\setmfpair {hnamei}{hvaluei}
\setmfboolean{hnamei}{hvaluei}
\setmfcolor {hnamei}{hvaluei}

These formerly internal mfpic macros can be use to define symbolic names for any
metafont or metapost variable type. The last four are abbreviations for the first used
with an appropriate value for htypei. For example, \setmfvariable{pair}{X}{(2,0)} can
be abbreviated \setmfpair{X}{(2,0)}. Note that these overwrite any variable with the
specified hnamei. For certain internal names, metafont will issue an error, but usually the
variable is silently redefined.

The commands \setmpvariable and \globalsetmpvariable (note the mp instead of
mf) are just alternative spellings . You can use either spelling with either the metafont or
metapost option.

The hvaluei must be a constant of the appropriate type or a metafont expression re-
turning the appropriate type. It can also be (or include) other variables previously defined.
The \setmfcolor command has been enhanced so that in recent metapost the hvaluei can
be any of the three types of colors metapost allows: numeric (for grayscale color), rgbcolor
or cmykcolor. The data type of hvaluei will be examined, and the variable hnamei will be de-
clared to be a variable of the appropriate type. The same is true of \setmfvariable{color}.

As an example of their use, since dimensions are numeric data types in metafont, the
command

\setmfnumeric{my_spc}{5pt}
\setmfnumeric{my_dia}{.8pt}

would set the metafont variables my_spc and my_dia to the values 5pt and .8pt, respec-
tively. After that, these variables can be used in any drawing command where a dimension
is required:

\plot[my_dia,my_spc]{Triangle}\rect{(0,0),(1,1)}

will plot the rectangle with small triangles of diameter .8pt, spaced 5pt apart.
The knowledgeable user may realize that path and picture are metafont data types,

and may want use them in \setmfvariable. It is also true that at some level, mfpic figure
macros produce a path and \mfpimage produces a picture. However, mfpic commands
cannot be used in the value portion of \setmfvariable. The TEX code that most mfpic
commands produce would be meaningless to metafont. You can store the path produced
by figure macros with \store, and store pictures in variables with \mfpimage or even \tile.

With the obvious exception of the \globalsetmfvariable command, these commands
define the variable locally. That is, the variable will revert to any previous definition (or
become undefined) at the end of the mfpic environment it is defined in. It is in fact lo-
cal to any metafont group. In mfpic, only \connect . . . \endconnect, \mfpimage . . .
\endmfpimage, and \mfpic . . . \endmfpic create metafont groups in the graph file.

4 For Advanced Users. 67

A warning about variable names. Metafont and metapost allow multi-part variable
names like ‘arrowhead length’ or ‘X.r’ The part after the first space or ‘.’ is called a
suffix. In metafont, variable settings are global unless explicitly made local. The code of
the \set... commands does make the variable setting local. However, metafont syntax
forbids this localization when a variable name has a suffix. Moreover, if you localize a
variable, metafont will localize all variables with that name plus any suffix. Even more,
localizing a variable renders all variables with the same name plus suffix locally undefined.
The command \globalsetmfvariable simply omits the localization part, so suffixes are
permitted, but it cannot ‘globalize’ something that has previously been localized within the
same group.

For example, suppose you use the example code in subsection 4.4.3 and define a custom
arrowhead path myAH and the corresponding clearing path myAH.clear. Suppose now you
try to make this head the default for the \arrow command by doing the following.

\setmfvariable{path}{Arrowhead}{myAH}

Then this assignments is local and makes Arrowhead.clear undefined (locally). You cannot
use \setmfvariable to define Arrowhead.clear; that will produce an error from meta-
font. You need to do

\setmfvariable{path}{Arrowhead}{myAH}
\globalsetmfvariable{path}{Arrowhead.clear}{myAH.clear}

and both assignments will be local. To make both assignments global, use the global version
in both.

\patharr{hnamei}: : :\endpatharr
This pair of macros, acting as an environment, accumulate all enclosing paths, in order,

into a path array named hnamei. A path array is a collection of paths with a common base
name indexed by integers from 1 to the number of paths. Any path in the array can be
accessed by means of \mfobj. For example, after

\patharr{pa}
\rect{(0,0),(1,1)} \circle{(.5,.5), .5}

\endpatharr

then \mfobj{pa[1]} refers to the rectangle and \mfobj{pa[2]} refers to the circle. In case
explicit numbers are used, metafont allows pa1 as an abbreviation for pa[1]. However, if a
numeric variable or some expression is used (e.g., pa[n+1]) the square brackets are required.

This command can only be used in an mfpic environment. For this reason, the definitions
it makes are global.

Note: In LATEX, this pair of macros can be used in the form of a LATEX-style environment
called patharr—as in \begin{patharr}: : :\end{patharr}.

\setarray{htypei}{hvari}{hlisti}
\globalsetarray{htypei}{hvari}{hlisti}
\pairarray{hvari}{hlist-of-pointsi}
\numericarray{hvari}{hlist-of-numbersi}
\colorarray{hvari}{hlist-of-colorsi}
\rgbcolorarray{hvari}{hlist-of-rgbcolorsi}
\cmykcolorarray{hvari}{hlist-of-cmykcolorsi}

These enable the simultaneous definition of variables. For example, after

4 For Advanced Users. 68

\pairarray{X}{(0,1),(1,1),(0,0),(1,0)}
the variables X1, X2, X3, and X4 are equal to the given points in that order. And then

\polyline{X1,X2,X3,X4}
will draw the lines connecting these four points. The index may optionally be put in
square brackets and may be separated from the name by any number of spaces. That is,
\polyline{X[1],X[2]} and \polyline{X 1,X 2} are the same as \polyline{X1,X2} to
metafont. If a numeric expression is used instead of an explicit number, square brackets
must surround it: X[1+1], X[2], X2 and X 2 are all the same. For all these array commands,
the variable X by itself (not followed by any digit or brackets) becomes a numeric variable
equal to the number of elements in the array. Except for \globalsetarray, the arrays are
defined locally if these commands occur in an mfpic environment, global otherwise.

Array variables may be used only where the values are processed only by metafont or
metapost, they are unknown to TEX. In particular, they cannot be used in commands that
position text unless mplabels is in effect. Variables may be used in the hlisti parameters of
commands, but they must have been previously defined or otherwise known to metafont.

Since arrays must all be variables of the same type, one cannot mix rgb and cmyk colors.
The \colorarray command requires rgb colors (for compatibility with early metapost).

Several commands in mfpic define arrays of objects that can be used in other commands.
The main ones are \regpolygon, \piechart and \barchart. These arrays are always global
(either because their use is restricted to an mfpic environment or for backward compatibility
with the time when they were so restricted).

Using \regpolygon{hnumi}{X}{...}{...} causes a pair array named X to be defined
having hnumi elements (and the additional pair X0 for the center). This is in addition to
creating the actual figure. The variable X alone becomes a numeric equated to hnumi.

Using \piechart (or \mfppiechart) causes the following arrays to become defined (or
redefined):

– piewedge, a path array describing the wedges of the chart. To access piewedge[1], for
example, one could use \mfobj{piewedge[1]}. This is almost exactly the same as the
mfpic command \piewdge{1} without optional arguments.

– pieangle, a numeric array, gives the starting angles of the wedges.
– piedirection, a pair array, gives the unit vectors pointing from the center of the

piechart through middles of the wedges. For example, if \pieangle1 is 0 and pieangle2
is 90 degrees, then piedirection1 is .cos 45; sin 45/, the unit vector whose angle is 45
degrees.

Using \barchart (or \mfpbarchart or any of its aliases) causes the following arrays to
become defined (or redefined). The exact meaning depends on whether bars are horizontal
or vertical. The following describes horizontal bars; exchange the roles of x and y if they
are vertical (also change ‘right’ to ‘top’, etc.):

– barstart, a numeric array, gives the position on the y-axis of the leading edge of the
bars.

– barbegin, numeric, gives the x-coordinate of the leftmost end of the bars.
– barend, numeric, gives the x-coordinate of the rightmost end of the bars.
– chartbar, a path array, gives the actual bars. For example, chartbar2 is the rectan-

gle with opposite corners (barbegin2,barstart2) and (barend2,barstart2+barwd),
where the numeric variable barwd is the thickness of the bar (which is a height for
horizontal bars).

– barlength, the same as barend. This is for backward compatibility; the name was
chosen at a time when all the bars had one side on an axis.

4 For Advanced Users. 69

4.12.5 Miscelaneous pair expressions
A useful metafont operator that produces points is the intermediation operator, whose
syntax is

(hnumi)[hp1i,hp2i]

That is, a number or numeric expression in parentheses followed by literal brackets
(this is not an optional argument) containing two points or pair expressions separated by a
comma. It returns an intermediate point on the line through hp1i and hp2i. The formula for
the returned value is p1Chnumi.p2�p1/. The midpoint is obtained with hnumi D :5. If the
hnumi is a pure number, the parentheses can be omitted, but they are required if it is any
other numeric expression. Values of hnumi larger than 1 or less than zero produce points
on the line that lie outside the segment from p1 to p2. This operator can also be applied
to numbers or (in metapost) to colors (of the same type). So that (2/3)[3,6] = 5 and
.7[green,blue] = (0,.3,.7). See section 4.3 for a description of colors in metapost and
metafont.

pathpoint(hfraci,hnamei)
This is another useful metafont command. It requires a number, hfraci, and the name

of a previously defined metafont path variable. (Defined, for example, using \store; see
subsection 4.10.2). It returns the point on the path that is approximately that fraction of
the path’s length from the start of the path. For example to draw a line from .0; 0/ to the
midpoint of an arc, do the following:

\store{myarc}\draw\arc{(1,0),(0,2),90}
\polyline{(0,0), pathpoint(.5,myarc)}

Metafont has no general command for calculating the lengths of paths; Metapost does,
but it is quite slow. Thus neither program has an efficient method for finding the described
point, so mfpic uses metafont/metapost macros that are faster, but less accurate than
they could be. Still, the results should (except in pathological cases) be accurate to within a
couple of percent of the length of the path. If they are not, adjust the value of the fraction.
These remarks about accuracy also hold for any other command (such as \partpath in
subsection 4.4.2) that take the fraction of a path length as a parameter.

The pathpoint command is not a basic metafont command, but is defined by the
grafbase macros that accompany mfpic.

metafont pairs can conveniently be viewed as complex numbers. So grafbase also
contains some functions useful in complex analysis (my research field). In what follows a,
z and w denote pair variables or constants, and each function interprets them as complex
numbers. Also t denotes an angle in radians. There are both numeric and pair valued
functions, the type of each is noted after the description:
Arg z The principle argument of z in radians (numeric).
Log z The principle logarithm of z (pair).
cis t .cos t; sin t /, same as dir degrees(t) (pair).
zexp w The complex exponential, ew (pair).
sgn z The signum, sgn.0; 0/ D .0; 0/ otherwise sgn z D z=jzj (pair).
conj z The complex conjugate, Nz (pair).
Moebius(a) z The Möbius transformation .z C a/=.1C Naz/ (pair)
pshdist(z,w) The pseudohyperbolic distance between z and w: jz � wj=j1 � Nwzj

(numeric).

4 For Advanced Users. 70

4.12.6 Manipulating metafont picture variables

\tile{htilenamei,huniti,hwdi,hhti,hclipi}
hmfpic drawing commandsi

\endtile

In this environment, all drawing commands contribute to a tile. A tile is a rectangular
picture which may be used to fill the interior of closed paths. Actually, a tile is a composite
object. After \tile{Nick, ... } : : : \endtile a picture variable Nick.pic is created as
well as numeric variable Nick.wd and Nick.ht. These are needed by the \tess command,
below.

The units of drawing are given by huniti, which should be an explicit dimension (like 1pt
or .2in). The tile’s horizontal dimensions are 0 to hwdi � huniti and its vertical dimensions 0
to hhti � huniti, so hwdi and hhti should be pure numbers. If hclipi is true then the drawing
is clipped to be within the tile’s boundary.

By using this macro, you can design your own fill patterns (to use them, see the
\tess macro below), but see the warning about memory use by the \tess command. The
htilenamei is globally defined by this command.

\tess{htilenamei}: : :
This rendering macro tiles the interior of a closed path with a tessellation comprised

of copies of the tile specified by htilenamei. The tile must have been previously created by
\tile{htilenamei, ... }. Tiling an open curve is technically an error, but the metafont
code responds by drawing the path and not doing any tiling. The metafont code places
shifted copies of the tile picture in a rectangular grid sufficient to cover the region, then
clips it to the closed path before drawing it.

Tiling large regions with complicated tiles can exceed the capacity of some versions of
metapost. There is less of a problem with metafont. This is not because metafont has
greater capacity, but because of the natural difference between bitmaps and vector graphics.

In metapost, the tiles are copied with whatever color they are given when they are
defined. They can be multicolored.

Before version 0.8, \tile was the only way to create a picture variable, and the only way
to draw this picture was with the \tess command. Now we have the following command to
place multiple copies of a picture:

\putmfpimage{hnamei}{hlisti}
This take the name of a picture variable and copies the picture at each location in the

hlisti, which should be a comma-separated list of coordinate pairs in graph coordinates. The
picture is copied so that its reference point is placed at each of the locations. The reference
point of a picture created with \tile is its lower left corner.

\mfpimage[hrefpti]{hpicnamei}
hmfpic drawing commandsi

\endmfpimage

This is another way to create a picture variable. The drawing commands within the
mfpimage environment contribute not to the current mfpic picture, but rather to the pic-
ture variable named in hpicnamei. Otherwise, they operate exactly as they would outside
this environment, using the same coordinate system and the same default values of all pa-
rameters, etc. (unlike the tile environment, which defines its own coordinate system). The

4 For Advanced Users. 71

picture is created with its reference point at the point hrefpti given in the optional argument.
The default is (0,0). For example:

\mfpimage[(1,1)]{Jan}
\fill\rect{(0,0),(1,1)}
\fill\rect{(1,1),(2,2)}
\rect{(0,0),(2,2)}

\endmfpimage

produces a simple 2-by-2 chessboard with its reference point at the center point .1; 1/. One
can then write something like

\putmfpimage{Jan}{(1,1),(3,1),(1,3),(3,3)}

to get a 4-by-4 chessboard: the picture Jan copied with its center at each of the listed points.
The behavior of \tlabel in an mfpimage environment depends on the setting. If mplabels

is turned off, then labels are added by TEX and are not included as part of the named
metafont or metapost picture variable. They are placed on the current picture as if the
mfpimage environment were not there at all. If mplabels is turned on and overlaylabels is also
turned on, or if the mfpimage environment is between \startbacktext and \stopbacktext,
then the labels will be saved and placed when the mfpic environment ends and not added
to the named picture variable. Thus, to include text labels in the named picture variable,
you must have mplabels on, overlaylabels off, and mfpimage outside any \startbacktext/
\stopbacktext.

The picture created by \mfpimage is locally defined. That is, it becomes undefined
at the end of the current mfpic environment. If one needs it to be global, one can use
\globalsetmfvariable (see subsection 4.12.4) to copy it to another variable. For example.
the command

\globalsetmfvariable{picture}{Dan}{Jan}

would make Dan globally defined to be equal to the current value of the picture Jan. Note
that picture variables can consume a lot of metafont’s memory. Copying one variable to
another doubles the amount of memory, at least until the end of the mfpic environment.

You can use \putmfpimage inside a mfpimage environment, provided the picture being
placed has been previously defined. Nesting a mfpimage inside another has not been tested
at all and so is not recommended. But if it works, the inner image would be local to the
environment created by the outer one, and so would be of limited use. One can use the
LATEX environment construct \begin{mfpimage} : : : \end{mfpimage} in a LaTeX document
instead of \mfpimage : : : \endmfpimage.

4.12.7 Metafont loops
All the mfpic loop commands create a loop (in the metafont language) in the output file.
The metafont commands in that loop are executed repeatedly by metafont or metapost.
From the point of view of TEX, however each command occurs only once. Starting with
version 0.9, these loops can be created inside or outside the mfpic drawing environment. If
outside, they must not contain any drawing commands, but can contain commands that set
variables, perform computations, etc.

\mfpfor{hfor-loop headeri}
hmfpic commandsi

\endmfpfor

This creates a for-loop in the metafont output file. The \mfpfor writes the start of the
loop and \endmfpfor writes the end. Any code written in the output file between them is

4 For Advanced Users. 72

executed repeatedly by metafont, according to the information in hfor-loop headeri. There
are two types of headers possible, illustrated by the following examples.

\mfpfor{center = (0,0), (1,0), (0,1)}
\gfill\circle{center,1}

\endmfpfor

This example will fill three circles of radius 1 with centers at the three given points. This
type of header has the format

hvariablei = hlisti

where hvariablei should be a simple variable name and hlisti is a comma separated list of
items of the appropriate data type. In the above, center is equated to pairs, but in the
following

\mfpfor{radius = 1,3,4}
\dotted\circle{(0,0),radius}

\endmfpfor

radius gets numeric values.
The other type of header uses a stepped variable:

\mfpfor{level = 3 step 2 until 9}
\circle{(0,0),sqrt(level)}

\endmfpfor

This will cause the metafont variable level to step through the values 3, 5, 7 and 9 and
the circles with radius

p
3,
p
5, etc. will be drawn. This type of header has the format

hvariablei = hstarti step hdeltai until hstopi

where hvariablei is as before, while hstarti, hdeltai and hstopi are numeric values. If hdeltai
is positive the loop is skipped entirely if hstopi is less than hstarti. Otherwise the loop is
executed successively with the variable equal to hstarti, then hstartiChdeltai then hstartiC
2hdeltai, etc., as long as the variable is not greater than hstopi. The behavior is similar if
hdeltai is negative, except the loop is repeated only as long as the variable is not less than
hstopi. If hdeltai is 0, then the metafont run will generate an error.

Note that the index variable (center and radius in the above two examples) is a tem-
porary metafont variable. If mplabels is turned on, this variable will work as expected in
the location parameter of a \tlabel command, but if it is used in the label part, it will be
interpreted as TEX code and printed as is. The index variable reverts to its previous state
outside the loop. That is, if it existed before the loop, it regains its previous value after the
loop, and if it was undefined before the loop, it is again undefined after.

The single word “upto” can be used as an abbreviation for “step 1 until” and “downto”
for “step -1 until” in for-loop headers. Spaces are not significant in for-loop headers,
except to distinguish the keywords (e.g. step) from variable names that might be use (e.g.,
for hstarti).

\mfpwhile{hconditioni}
hmfpic commandsi

\endmfpwhile

The hconditioni should be an expression that can be either true or false about a meta-
font variable that changes at some time during the loop body. The loop body is executed
(by metafont) as long as the condition is true. Example:

4 For Advanced Users. 73

\setmfvariable{numeric}{R}{20}
\mfpwhile{R > 1}

\rect{(0,0), (R,3R)}
\mfcmd{R:=R/2}

\endmfpwhile

There are no mfpic commands to systematically change a variable, so in this example
we have resorted to directly writing a metafont assignment command via \mfcmd (see
subsection 4.12.3 above) that reduces R by half. The loop will be executed with R having
the successive values 20, 10, 5, 2:5, and 1:25. The resulting picture could have been achieved
with \mfpfor using this list of values.

\mfploop
hmfpic commandsi

\mfpuntil{hconditioni}
hmfpic commandsi

\endmfploop

The body of this loop will be repeated until the hconditioni becomes true. The condition
should be some expression that can be either true or false about a variable that changes
during the loop execution. It should eventually become true. If an mfploop environment
does not contain an \mfpuntil command, then the \endmfploop command will generate
a warning message. If the warning is ignored, and the user has not otherwise arranged for
loop termination,18 the .mf file will contain an infinite loop. The \mfpuntil command will
break the loop at whatever point it occurs. Example:

\setmfvariable{numeric}{R}{20}
\mfploop

\mfcmd{R:=R/2}
\mfpuntil{R <= 1}
\rect{(0,0), (R,3R)}

\endmfploop

This will draw rectangles with R equal to 10, 5, 2:5, and 1:25. On the next execution of the
loop the condition R<=1 is true, and the break occurs before the next rectangle is drawn.
Note that any \mfpwhile could be encoded with \mfploop. In fact, the code written to the
output file by

\mfpwhile{hconditioni}

is identical to that written by

\mfploop\mfpuntil{not hconditioni}

The command \mfpuntil can also be used in mfpfor and mfpwhile environments to
break the loop prematurely when the given condition becomes true.

All three of these loop structures bracket the inner code in a TEX group. In a LATEX
document, the usual \begin/\end style can be used. For example,

\begin{mfpfor}{radius = 1,3,4}
\circle{(0,0),radius}

\end{mfpfor}

18Perhaps by means of \mfsrc commands. It is because of this possibility that only a warning is produced
and not an error. If the warning becomes annoying, adding \mfpuntil{false} to the loop will silence it.
This command will never break the loop because the condition false (of course) never becomes true.

4 For Advanced Users. 74

Just to be clear: in all the examples, what is written to the figure file is a single circle or
rectangle drawing command, bracketed by code that causes metafont to execute it several
times with different values for the variable. From TEX’s point of view, there is only one
mfpic drawing command.

4.12.8 Miscellaneous

\mfmode{hmode-namei}
\mfresolution{hDPI i}

When working with metafont, the code in grafbase.mf needs to know the resolution
at which to make the font with all the figures. If the wrong resolution is assumed, the figure
may end up appearing wrongly scaled or have other problems (especially with shading). If
your DVI viewing/printing program and the file modes.mf are correctly configured, nothing
may need to be done. If not, as a last resort, you can set the metafont mode or the
metafont resolution in your .tex file with these commands. If you don’t know what that
means, ask a guru, but then you should probably be using metapost and not metafont.

Note that this is a last resort. The code in grafbase.mf first checks if mode has been
defined, then checks if localfont is defined and only then checks if the resolution has been
set by this method (if all three fail, it uses a value of 600 DPI).

\noship
\stopshipping
\resumeshipping

\stopshipping turns off character shipping (by metafont to the TFM and GF files,
or by metapost to appropriate EPS output file) until \resumeshipping occurs. If you
want just one character not shipped, just use \noship inside that mfpic environment. This
is useful if all one wishes to do in the current mfpic environment is to make tiles (see
above) or define picture variables with \mfpimage or path arrays with \patharr. While
\mfpimage defines the picture locally, one can globally copy it to another variable with
\globalsetmfvariable (see subsection 4.12.4).

\assignmfvalue{hTEX-macroi}{hMF-expri}
\assignmpvalue{hTEX-macroi}{hMF-expri}
\globalassignmfvalue{hTEX-macroi}{hMF-expri}
\globalassignmpvalue{hTEX-macroi}{hMF-expri}

The command names spelled with “mp” are no different than the ones spelled with “mf”.
You can use either spelling with either the metafont or metapost option.

These commands causes the hMF-expri to be written to the output file for metafont
to evaluate. The resulting value is then written to the .log file of that metafont run. On
the next TEX run, if mfpreadlog (see section 2.11) is in effect, the macro hTEX-macroi will
be defined to produce the resulting value. For example:

\setmfnumeric{s}{2}
\assignmfvalue{\val}{exp s}
\tlabel(1,2){$e^s = \val$}

After metafont is run and then TEX run a second time, \val will acquire the definition
‘7.38905’, the value of exp s when s=2 (i.e., e2, correct to at least the fourth decimal place).
If mplabels is in effect, the correct label is written to the figure file only during this second
run, and a second metapost run will be required. In many cases (when using pdfTEX, for

4 For Advanced Users. 75

example, or when the label changes the figure dimensions), a third TEX run will be required
to make the figure correct when it is included in the document.

Before metafont is run to evaluate the expression, the macro produces ‘???’. Thus,
it cannot be used in places where a number is needed (as in the position arguments of a
\tlabel command). Note also that if a command defined by \assignmfvalue is used in a
tlabel with mplabels in effect, then mplabels must be in effect during the \assignmfvalue
command as well.

The ‘global’ version makes the definition of the hTEX-macroi global, surviving the
current group. In particular, it can be used in other pictures. The plain versions create
commands that are only locally defined. Past versions of this manual stated that you can
say

\global\assignmfvalue

to define the macro globally. This turns out not to be true in all cases. If a global definition
is needed, use the global versions above.

Because of the asynchronous nature of the definition process, using \assignmfvalue with
the same macro name more than once in the same mfpic environment will not work. The
macro becomes defined upon reading the logfile during the execution of \opengraphsfile,
and it will end up with the last definition encountered. (The same is true for uses outside
mfpic environments: the macro acquires the last such definition.) Moreover, the definition
is associated to a picture by number. Which means that reordering the environments or
changing the numbering by any means will require the TEX-metafont-TEX sequence (or
more) to be repeated.

If the hTEX-macroi is already defined, no warning will be issued and the command will be
redefined, so be careful in the name chosen. If mplabels is turned off when \assignmfvalue
is used, but turned on before the hTEX-macroi is used in a \tlabel command, the macro
definition will not be written to the .mp file, and either an error message, or incorrect label
will result when metapost tries to make the tlabel.

The concept and much of the code for \assignmfvalue came from Werner Lemberg.
However, I have rewritten it substantially to conform to mfpic conventions and so any
errors are my responsibility.

\cutoffafter{hobj i}. . .
\cutoffbefore{hobj i}. . .

These prefix macros modify the following path by cutting part of it off. They take an
‘object’ (a variable in which a path was previously stored using \store) and uses it to
trim off one end of the following path. \cutoffbefore cuts off the part of the path before
its first intersection with the object, while \cutoffafter cuts off the part after the last
intersection. If the path does not intersect the object, nothing is cut off. If the object and
the path intersect in more than one point, as little as possible (usually19) is cut off. This is
reliable only when there is only one point of intersection.

These macros can be used to create a curve that starts or ends right at another figure
without having to know the point where the two curves intersect.

19metafont’s methods for finding the ‘first’ point of intersection do not always find the actual first one.

4 For Advanced Users. 76

\randomlines{hmaxshifti}. . .
\randomizepath{hmaxshifti, hweirdnessi}. . .

These modify the following path by applying random shifts to the nodes of a path. The
first one, \randomlines then simply connects those new points by straight lines, while the
second one also applies randomization to the control vectors. The hmaxshifti argument is
either a positive number (in graph units) that limits the distance a node can be moved, or it
is an ordered pair of positive numbers, in which case the first limits the horizontal distance
and the second limits the vertical. If hmaxshifti is larger than the distance between nodes,
cusps or loops are likely in the result.

For \randomizepath the hweirdnessi parameter controls how the control vectors are
modified. Roughly speaking the control vectors are randomly rotated up to 30hweirdnessi
degrees and randomly scaled up or down by a factor of 2hweirdnessi. (A ‘control vector’ is a
vector pointing from a node to one of its control points.) However, this is done in a way that
preserves smoothness at each node where the path is smooth. Values of hweirdnessi greater
than 1 are probably too weird.

\brownianmotion{hstarti,hnumi,hscalei}
This figure macro uses another kind of randomness. The path starts at the point hstarti,

then proceeds in a straight line in a random direction a random distance. The random process
used is a normaldeviate in each coordinate, scaled by hscalei. This is repeated hnumi times.
Thus, hstarti is a coordinate pair in graph coordinates, hnumi is a positive whole number
and hscalei is a positive real number. In rare cases, the random distance can be quite large,
but on average it will be about 0:56�hscalei. The size (bounding box) of the resultant path
can also be, in rare cases, quite large, but it is usually on the order of

p
hnumi times hscalei.

The path produced is technically not Brownian motion, but rather a ‘random walk’.
However, for small hscalei and large hnumi it approximates Brownian motion.

\mftitle{htitlei}
Write the string htitlei to the metafont file, and use it as a metafont message. (See

The metafontbook, chapter 22, page 187, for two uses of this.)

\tmtitle{htitlei}
Write the text htitlei to the TEX document, and to the log file, and use it implicitly in

\mftitle. This macro forms a local group around its argument.

Since TEX is limited to 256 dimension registers, and since dimensions are so important
to typesetting and drawing, it is common to use up all 256 when drawing packages are
loaded. Therefore mfpic uses font dimensions to store dimension values. The following is
the command that handles the allocation of these dimensions.

\newfdim{hfdimi}
This create a new global font dimension named hfdimi, which is a TEX control sequence

(with backslash). It can be used almost like an ordinary TEX dimension. One exception is
that the TEX commands \advance, \multiply and \divide cannot be applied directly to
font dimensions (nor LATEX’s \addtolength); however, the font dimension can be copied to
a temporary TEX dimension register, which can then be manipulated and copied back (using
\setlength in LATEX, if desired). Another exception is that all changes to a font dimension
are global in scope. Also beware that \newfdim uses font dimensions from a single font, the
dummy font, which most TEX systems ought to have. (You’ll know if yours doesn’t, because

4 For Advanced Users. 77

mfpic will fail upon loading!) Also, implementations of TEX differ in the number of font
dimensions allowed per font. Mfpic currently uses font dimensions 23 through 52, which
should be OK.

Almost all of mfpic’s basic dimension parameters are font dimensions. We arrange for
them to be local to mfpic environments by saving their values at the start and restoring
them at the end.

\setmfpicgraphic{hfilenamei}
This is the command that is invoked to place the graphic created. See appendix 5.6.3

for a discussion of its use and its default definition. It is a user-level macro so that it can be
redefined in unusual cases. It operates on the output of the following macro:

\setfilename{hfilei}{hnumi}
Mfpic’s figure inclusion code ultimately executes \setmfpicgraphic on the result of

applying \setfilename to two arguments: the file name specified in the \opengraphsfile
command and the number of the current picture. Normally \setfilename just puts them to-
gether with the ‘.’ separator (because that is usually the way metapost names its output),
but this can be redefined if the metapost output undergoes further processing or conversion
to another format in which the name is changed. Any redefinition of \setfilename must
come before \opengraphsfile because that command tests for the existence of the first fig-
ure. After any redefinition, \setfilename must be a macro with two arguments that creates
the actual filename from the above two parts. It should also be completely expandable. See
the appendices, subsection 5.6.3 for further dicussion.

\setfilenametemplate{htemplatei}
With the metapost option, when you write \opengraphsfile{figs}, a file figs.mp is

created. By default, running metapost on it results in files named figs.1, figs.2, etc.
Recent metapost allows the output filenames to be modified. As of mfpic version 1.00,
you can do this to some extent from your .tex file. One needs to define a template that tells
metapost how to construct the output file name from the ‘jobname’ and the figure number.
This is done with the above command. In htemplatei you can put any plain characters, plus
the two special tokens: _ and \#. Each figure’s filename is constructed by replacing these
tokens with the metapost jobname and the figure number, respectively. For example, with
the jobname figs,

\setfilenametemplate{my_-\#.mps}

will cause the figure files to have names myfigs-1.mps, myfigs-2.mps, etc., instead of the
defaults. Mfpic adjusts the definition of \setfilename accordingly, so that the correct
filenames are used.

Do not use this command unless you know your version of metapost is recent enough
to have this capability. Under the metafont option, this command is simply ignored, but
mfpic has no way of checking the metapost version on its own.

\preparemfpicgraphic{hfilenamei}
This command is automatically invoked before \setmfpicgraphic to make any prepa-

rations needed. The default definition is to do nothing except when the graphics package
is used. That package provides no clean way to determine the bounding box of the graphic
after it is included. Since mfpic needs this information, this command redefines an internal

4 For Advanced Users. 78

command of the graphics package to make the data available. If \setmfpicgraphic is
redefined then this may also have to be redefined.

\getmfpicoffset{hfilenamei}
This command is automatically invoked after \setmfpicgraphic to store the offset of the

lower left corner of the figure in the macros \mfpicllx and \mfpiclly. If \setmfpicgraphic
is redefined then this may also have to be redefined.

\ifmfpmpost

Users wishing to write code that adjusts its behavior to the graph file processor can use
this to test which option is in effect. The macro \usemetapost sets it true and \usemetafont
sets it false. There are no commands \mfpmposttrue nor \mfpmpostfalse, since the user
should not be changing the setting once it is set: a great deal of mfpic internal code depends
on them, and on keeping them consistent with the \opengraphsfile commands reading of
these booleans.

\mfpicversion

This expands to the current mfpic version multiplied by 100. At this writing, it produces
‘107’ because the version is 1.07. It can be used to test the version:

\ifx\mfpicversion\undefined \def\mfpicversion{0}\fi
\ifnum\mfpicversion<70 ... \else ... \fi

\mfpicversion was added in version 0.7.
Most of mfpic’s commands have arguments with parts delimited by commas and paren-

theses. In most cases this is no problem because they are written unchanged to the .mf and
there they are parsed just fine. Some commands’ arguments, however, have to be parsed
by both TEX and metafont. Examples are \tlabel (sometimes, under mplabels), and
\pointdef. One might be tempted to use metapost expressions there and that works fine
as long as they do not contain commas or parentheses. In such cases, they can sometimes be
enclosed in braces to prevent TEX seeing these elements as delimiters, but sometimes these
braces might get written to the .mf (or .mp) output and cause a metafont (metapost)
error. In such cases the following work-around might be possible:

\def\identity#1{#1}
\pointdef{A}(\identity{angle (1,2)},3)
\rect{(0,0),\A}

The braces prevent TEX’s argument parsing from seeing the first comma as a delimiter,
but upon writing to the .mf, any \identity commands are expanded and only the contents
appear in the output. (TEX parses the argument to assign meanings to \Ax and \Ay.)

If the babel package is loaded with certain options, the comma may become a special
character. In that case, one may need to deactivate babel shorthands before some mfpic
code. One might use \everymfpic to do this in every mfpic environment. In some cases, one
may need to reactivate babel shorthands insided \tlabel, and one might use \everytlabel
for this purpose. See your babel documentation for the commands to do these things.

5 Appendices
5.1 Acknowledgements.
Tom would like to thank all of the people at Dartmouth as well as out in the network world
for testing mfpic and sending him back comments. He would particularly like to thank:

Geoffrey Tobin for his many suggestions, especially about cleaning up the metafont
code, enforcing dimensions, fixing the dotted line computations, and speeding up the shading
routines (through this process, Geoffrey and Tom managed to teach each other many of the
subtleties of metafont), and for keeping track of mfpic for nearly a year while Tom finished
his thesis;

Bryan Green for his many suggestions, some of which (including his rewriting the
\tcaption macro) ultimately led to the current version’s ability to put graphs in-line or
side-by-side; and

Uwe Bonnes and Jaromír Kuben, who worked out rewrites of mfpic during Tom’s work-
ing hiatus and who each contributed several valuable ideas.

Some credit also belongs to Anthony Stark, whose work on a FIG to metafont converter
has had a serious impact on the development of many of mfpic’s capabilities.

Finally, Tom would like to thank Alan Vlach, the other TEXnician at Berry College, for
helping him decide on the format of many of the macros, and for helping with testing.

Dan Luecking would like to echo Tom’s thanks to all of the above, especially Geoffrey
Tobin and Jaromír Kuben. And to add the names Taco Hoekwater, for comments, advice
and suggestions, Werner Lemberg, for the \assignmfvalue command, and Zaimi Sami Alex
for suggestions.

But mostly, he’d like to thank Tom Leathrum for starting it all.

5.2 Changes History.
See the file changes.txt for a somewhat sporadic history of changes to mfpic. See the file
README for changes added since the previous version, and for any known problems.

5.3 Summary of Options.
Unless otherwise stated, any of the command forms will be local to the current mfpic
environment if used inside. Otherwise it will affect all later environments.

Option: Command form(s): Restrictions:

metapost \usemetapost Command must come before
\opengraphsfile. Incompatible with
metafont option.

metafont \usemetafont The default. Command must come before
\opengraphsfile. Incompatible with
metapost option.

mplabels \usemplabels,
\nomplabels

Requires metapost. If command is used inside
an mfpic environment, it should come before
\tlabel commands to be affected.

overlaylabels \overlaylabels,
\nooverlaylabels

Has no effect without metapost.

truebbox \usetruebbox,
\notruebbox

Has no effect without metapost.

79

5 Appendices 80

clip \clipmfpic,
\noclipmfpic

No restrictions.

clearsymbols \clearsymbols,
\noclearsymbols

No restrictions.

centeredcaptions
raggedcaptions

\usecenteredcaptions,
\nocenteredcaptions
\useraggedcaptions,
\noraggedcaptions

If command is used inside an mfpic
environment, it should come before the
\tcaption command.

debug \mfpicdebugtrue,
\mfpicdebugfalse

To turn on debugging while mfpic.tex is
loading, issue \def\mfpicdebug{true}.

draft
final
nowrite

\mfpicdraft
\mfpicfinal
\mfpicnowrite

Should not be used together. Command
forms should come before \opengraphsfile

mfpreadlog \mfpreadlog Needed for \assignmfvalue. Must occur
before \opengraphsfile.

5.4 Plotting Styles for \plotdata.
When \plotdata passes from one curve to the next, it increments a counter and uses
that counter to select a dash pattern, color, or symbol. It uses predefined dash patterns
named dashtype0 through dashtype5, or predefined colors named colortype0 through
colortype7, or predefined symbols named pointtype0 through pointtype8. Here follows
a description of each of these variables. These variables must not be used in the second
argument of \reconfigureplot, whose purpose is to redefine these variables.

Under \dashedlines, we have the following dash patterns:

Name Pattern Meaning
dashtype0 0bp solid line
dashtype1 3bp,4bp dashes
dashtype2 0bp,4bp dots
dashtype3 0bp,4bp,3bp,4bp dot-dash
dashtype4 0bp,4bp,3bp,4bp,0bp,4bp dot-dash-dot
dashtype5 0bp,4bp,3bp,4bp,3bp,4bp dot-dash-dash

Under \coloredlines, we have the following colors. Except for black and red, each
color is altered as indicated. This is an attempt to make the colors more equal in visibility
against a white background. (The success of this attempt varies greatly with the output or
display device.) Four of the eight colors use the cmyk model when the metapost version is
at least 1:000.

Name Color (r,g,b) (c,m,y,k)
colortype0 black .0; 0; 0/ (0,0,0,1)
colortype1 red .1; 0; 0/

colortype2 blue .:2; :2; 1/

colortype3 orange .:66; :34; 0/

colortype4 green .0; :8; 0/

colortype5 magenta .:85; 0; :85/ (0,.85,0,.15)
colortype6 cyan .0; :85; :85/ (.85,0,0,.15)
colortype7 yellow .:85; :85; 0/ (0,0,.85,.15)

5 Appendices 81

Under \pointedlines and \datapointsonly, the following symbols are used. Internally
each is referred to by the numeric name, but they are identical to the more descriptive name.
Syntactically, all are metafont path variables. (The order changed between versions 0.6
and 0.7.)

Name Description
pointtype0 Circle
pointtype1 Cross
pointtype2 SolidDiamond
pointtype3 Square
pointtype4 Plus
pointtype5 Triangle
pointtype6 SolidCircle
pointtype7 Star
pointtype8 SolidTriangle

5.5 Special Considerations When Using Metafont.
The most important restriction in metafont is on the size of a picture. Coordinates in
metafont ultimately refer to pixel units in the font that is output. These are required
to be less than 4096, so an absolute limit on the size of a picture is whatever length a
row of 4095 pixels is. In fonts prepared for a LaserJet4 (600 DPI), this means 6.825 inches
(17.3355cm). For a 1200 DPI pronter, the limit is 3.4125 inches.

A similar limit holds for numbers input, and the values of variables: metafont will return
an error for “sin 4096”. Intermediate values can be greater (sin (2*2048) will cause no
error), but final, stored results are subject to the limit. An mfpic example that generated
an error recently was:

\mfpicunit 1mm
\mfpic[10]{-3}{7}{-3.5}{5}

\function{-4.5,4,.1}{x*x}
\endmfpic

The problem was the value of 4:5�4:5 D 20:25: after multiplying by the \mfpic scaling factor,
the \mfpicunit in inches, and the DPI value, this produces 20:25�10�0:03937�600 > 4783
pixel units. The error did not occur at the point of creating the font, but merely at the point
of storing the path in an internal variable for manipulation and drawing. Thus, the fact that
this particular picture was clipped to a much smaller size for printing did not help.

In metapost, the limit on numeric values is only 8 times as high: 32768. However, that
is independent of printer resolution and is interpreted as PostScript points (TEX’s ‘big
points’). At 72 points to the inch, this allows figures to be about 12.64 yards (11.56m).

5.6 Special Considerations When Using Metapost.
5.6.1 Required support
To use mfpic with metapost, the following support is needed (besides a working metapost
installation):

5 Appendices 82

TEX format support needed
plain TEX The file epsf.tex or epsf.sty
LATEX209 (No longer supported, but plain TEX methods might work)
LATEX The package graphics or graphicx
pdfLATEX The package graphics or graphicx with option pdftex
plain pdfTEX The files supp-pdf.mkii or supp-pdf.tex and (possibly)

supp-mis.tex
In all cases The files grafbase.mp, dvipsnam.mp and mfpicdef.tex plus, of

course, mfpic.tex (and mfpic.sty for LATEX)

The files grafbase.mp and dvipsnam.mp should be in a directory searched by meta-
post. If metapost cannot find the file grafbase.mp, then by default it will try to input
grafbase.mf, which is generally fatal (and always futile).

The remaining files should be in directories searched by the appropriate TEX variant.
The file mfpicdef.tex is input by TEX when metapost is processing labels in .mp files
created by mfpic. The user is free to add commands of his own to that file, but be warned
that updates to mfpic will overwrite it. Better to create ones own file (say mydefs.tex)
and arrange its input via \mfpverbtex{\input mydefs.tex}

In case pdfLATEX is used, the graphics package is given the pdftex option. This option
requires the file pdftex.def which currently inputs one of the supp-pdf files. Early versions
of supp-pdf.tex will input supp-mis.tex. These three files should be supplied with most
TEX installations.20 Older versions had some bugs in connection with the babel package.
One workaround was to load the graphics package and mfpic before babel.

If the user loads one of the above required files or packages before the mfpic macros
are loaded then mfpic will not reload them. Mfpic will load whichever one it decides is
required. In the LATEX2" case, mfpic will load the graphics package. If the user wishes
graphicx, then that package must be loaded before mfpic.

5.6.2 Metapost is not metafont
PostScript is not a pixel oriented language and so neither is metapost. The model for
drawing objects is completely different between metafont and metapost, and so one
cannot always expect the same results. Metapost support in mfpic was carefully written
so that files successfully printed with mfpic using metafont would be just as successfully
printed using metapost. Nevertheless, it frequently chokes on files that make use of the
\mfsrc command for writing code directly to the .mf file. While grafbase.mp is closely
based on grafbase.mf, some of the code had to be completely rewritten.

Pictures in metapost are stored as (possibly nested) sequences of objects, where objects
are things like points, paths, contours, sub-pictures, etc. In metafont, pictures are stored
as a grid of pixels. Pictures that are relatively simple in one program might be very complex
in the other and even exceed memory allocated for their storage. Two examples are the
\polkadot and \hatch commands. When the polkadot space and size are both too small,
a \polkadot-ed region has been known to exceed metapost capacity, while being well
within metafont capacity. In metapost the memory consumed by \hatch goes up in
direct proportion to the linear dimensions of the figure being hatched, while in metafont
it goes up in proportion to the area (except in horizontal hatching), and then the reverse
can happen, with metafont’s capacity exeeded far sooner that metapost’s.

20They are part of the ConTEXt distribuition. At this writing, these files, plus a few others, can also be
found at
CTAN/graphics/metapost/contrib/tools/mptopdf/tex/context/base/.

5 Appendices 83

In metapost it is important to note that each prefix modifies the result of the entire
following sequence. In essence prefixes can be viewed as being applied in the opposite order
to their occurrence. Example:

\dashed\gfill\rect{(0,0),(1,1)}

This adds the dashed outline to the filled rectangle. That is, first the rectangle is defined,
then it is filled, then the outline is drawn in dashed lines. This makes a difference when
colors other than black are used. Drawing is done with the center of the virtual pen stroked
along the boundary curve(s), so half of its width falls inside the rectangle. On the other
hand, filling is done right up to the boundary. In this example, the dashed lines are drawn
on top of part of the fill. In the reverse order, the fill would cover part of the dashed outline.

5.6.3 Graphic inclusion
It may be impossible to completely cater to all possible methods of graphic inclusions
with automatic tests. The macro that is invoked to include the PostScript graphic is
\setmfpicgraphic and the user may (carefully!) redefine this to suit special circumstances.
Actually, mfpic runs the following sequence:

\preparemfpicgraphic{hfilenamei}
\setmfpicgraphic{hfilenamei}
\getmfpicoffset{hfilenamei}

The following are the default definitions for \setmfpicgraphic:

plain TEX \def\setmfpicgraphic#1{\epsfbox{#1}}
LATEX209 (No longer supported, but likely the plain TEX definition will be selected.)
LATEX \def\setmfpicgraphic#1{\includegraphics{#1}}
pdfLATEX \def\setmfpicgraphic#1{\includegraphics{#1}}
pdfTEX \def\setmfpicgraphic#1{\convertMPtoPDF{#1}{1}{1}}

Moreover, since metapost by default writes files with numeric extensions, we add code
to each figure, so that these graphics are correctly recognized as EPS or MPS. For example,
to the figure with extension .1, we add the equivalent of one of the following

\DeclareGraphicsRule{.1}{eps}{.1}{} in LATEX2".
\DeclareGraphicsRule{.1}{mps}{.1}{} in pdfLATEX.

After running the command \setmfpicgraphic, mfpic runs \getmfpicoffset to store
the lower left corner of the bounding box of the figure in two macros \mfpicllx and
\mfpiclly. All the above versions of \setmfpicgraphic (except \includegraphics) make
this information available; the definition of \getmfpicoffset merely copies it into these
two macros. What mfpic does in the case of \includegraphics is to modify (locally) the
definition of an internal command of the graphics package so that it copies the informa-
tion to those macros, and then \getmfpicoffset does nothing. This internal modification is
accomplished by the macro \preparemfpicgraphic. Changes to \setmfpicgraphic might
require changing either or both of \preparemfpicgraphic and \getmfpicoffset. All three
of these commands are fed the graphic’s file name as the only argument, although only
\setmfpicgraphic currently does anything with it.

One possible reason for wanting to redefine \setmfpicgraphic might be to rescale all
pictures. This is definitely not a good idea. A good deal of mfpic’s figure placemant code
assumes that the size of the figure is consistent with the coordinate system set up by the
\mfpic command. With mplabels plus truebbox it might work, but (i) it has not been
considered in writing the mfpic code, (ii) it will then scale all the text as well as the figure,

5 Appendices 84

and (iii) it will scale all line thickness, which should normally be a design choice independent
of the size of a picture. To rescale all pictures, one need only change \mfpicunit and rerun
TEX and metapost.

A better reason might be to allow the conversion of your metapost figures to some
other format. Then redefining \setmfpicgraphic could enable including the appropriate
file in the appropriate format.

The filename argument mentioned above is actually the result obtained by running the
macro \setfilename. The command \setfilename gets two arguments: the name of the
metapost output file (set in the \opengraphsfile command) without extension, and the
number of the picture. The default definition of \setfilename merely inserts a dot between
the two arguments.21 That is \setfilename{fig}{1} produces fig.1. You can redefine this
behavior also. Any changes to \setfilename must come after the mfpic macros are input
and before the \opengraphsfile command. Any changes to \setmfpicgraphic must come
after the mfpic macros are input and before any \mfpic commands, but it is best to place
it before the \opengraphsfile command.

As mfpic is currently written, \setfilename must be completely expandable, which
means it should contain no definitions, no assignments such as \setcounter, and no calcu-
lations.22 To test whether a proposed definition is completely expandable, put

\message{***\setfilename{file}{1}***}

after the definition in a .tex file and view the result on the terminal or in the .log file. You
should see only your expected filename between the asterisks.

5.7 Mfpic and the Rest of the World.
5.7.1 The literature
This author has personal knowledge of one mathematical article which definitely uses mfpic
to create diagrams, and that is this author’s joint paper with J. Duncan and C. M. McGregor:
On the value of pi for norms in R2 in the College Mathematics Journal, vol. 35, pages 84–92.
Oddly enough, it was McGregor and not I who chose to use mfpic for the illustrations.

There also exists a book that makes use of mfpic: Introduction to functional equations:
theory and problem solving strategies for mathematical competitions and beyond by Costas
Efthimiou, MSRI/Mathematical Circles Library, vol. 6, 2011.

There are at least two major publications where mfpic has garnered more than a cur-
sory mention. The most up-to-date is a section in The LATEX Graphics Companion by Michel
Goossens, Sebastian Rahtz and Frank Mittelbach. It describes a version prior to the intro-
duction of metapost support, but it correctly describes a subset of its current commands
and abilities. The LATEX Companion (Second Edition) mentions mfpic, but only in its an-
notation of the bibliography entry for TEX Unbound (see below).

The other is TEX Unbound by Alan Hoenig, which contains a chapter on mfpic. Unfor-
tunately, it describes a version that was replaced in 1996 with version 0.2.10.9. The following
summarizes the differences between the description23 found in Chapter 15 and mfpic ver-
sions 0.2.10.9 through the current one:

\wedge is now renamed \sector to avoid conflict with the TEX command of the same
name. The syntax is slightly different from that given for \wedge:

21Unless modified by \setfilenametemplate, of course. See subsection 4.12.8.
22But appropriate use of \numexpr (in eTEX) for calculations is probably OK.
23While I’m at it: TEX Unbound occasionally refers to mfpic using a logo-like formatting in which the

‘MF’ is in a special font and the ‘I’ is lowered. This ‘logo’ may suggest a relationship between mfpic and
PICTEX. There is no such relationship, and there is no official logo-like designation for mfpic.

5 Appendices 85

\sector{(hx i,hyi), hradiusi, hangle1 i, hangle2 i}

The macro \plr{(hr0i,h�0i),(hr1i,h�1i),: : :} is now used to convert polar coordinate
pairs to rectangular coordinates and the commands \plrcurve, \plrcyclic, \plrlines
and \plrpoint were dropped from mfpic. Now use

\curve{\plr{(hr0i,h�0i),(hr1i,h�1i),: : :}}

instead of

\plrcurve{(hr0i,h�0i),(hr1i,h�1i),: : :}

and similarly for \plrcyclic, \plrlines and \plrpoint.
\fill is now renamed \gfill to avoid conflict with the LATEX command of the same

name.
\rotate, which rotates a following figure about a point, is now renamed \rotatepath

to avoid confusion with a similar name for a transformation (see below).
\white is now renamed \gclear because \white is too likely to be chosen for, or confused

with, a color command.
The following affine transform commands were changed from a third person indicative

form (which could be confused with a plural noun) to an imperative form:

Old name: New name:
\boosts \boost
\reflectsabout \reflectabout
\rotatesaround \rotatearound
\rotates \rotate
\scales \scale
\shifts \shift
\xscales \xscale
\xslants \xslant
\xyswaps \xyswap
\yscales \yscale
\yslants \yslant
\zscales \zscale
\zslants \zslant

\caption and \label are now renamed \tcaption and \tlabel to avoid conflict with
the LATEX commands.

\mfcmd was renamed \mfsrc for clarity, and (in version 0.7) a new \mfcmd was defined,
which is pretty much the same except it appends a semicolon to its argument.

There is a misprint: \axisheadlin should be \axisheadlen.
Finally, in the LATEX template on page 496 is no longer the only possiblity: recent mfpic

may be loaded with \usepackage.

5.7.2 Other programs
There exists a program, fig2mfpic that produces mfpic code as output. The code pro-
duced (as of this writing) is somewhat old and mostly incompatible with the description in
this manual. Fortunately, it is accompanied by the appropriate versions of files mfpic.tex
and grafbase.mf. Unfortunately, the names conflict with the current filenames and so they
should only be used in circumstances where no substitution will occur, say in a local directory

5 Appendices 86

together with the other sources for the document being produced. Moreover, the documen-
tation in this manual may not apply to the code produced. However the information in TEX
Unbound may apply.

There exist a package, circuit_macros, that can produce a variety of output formats,
one of which is mfpic code. One writes a file (don’t ask me what it consists of) and appar-
ently processes it with m4 and then (perhaps) dpic to produce the output. The mfpic code
produced appears to be compatible with the current mfpic.

5 Appendices 87

5.8 Index of commands, options and parameters.

a
\applyT, 56
\arc, 21
\arccomplement, 33
\arrow, 33
Arrowhead, 14, 34
\arrowhead, 34
\arrowmid, 34
\arrowtail, 34
\assignmfvalue, 74
\assignmpvalue, 74
Asterisk, 14
\axes, 16
\axis, 16
\axisheadlen, 61
\axislabels, 51
\axisline, 17
\axismargin, 17
\axismarks, 18

b
\backgroundcolor, 28
\barchart, 25
\bargraph, 25
\bclosed, 31
\begin{mfpic}, 13
\belowfcn, 43
\bmarks, 18
\boost, 56
\border, 17
\brownianmotion, 76
\btwnfcn, 43
\btwnplrfcn, 43

c
\cbclosed, 64
\cbeziers, 65
centeredcaptions, 7
\chartbar, 26
Circle, 14
\circle, 20
\clearsymbols, 7, 15
clearsymbols, 7
clip, 6
\clipmfpic, 6
\closedcbeziers, 65

\closedcomputedspline, 64
\closedconvexcurve, 24
\closedcspline, 63
\closedcurve, 23
\closedmfbezier, 64
\closedpolyline, 15
\closedqbeziers, 65
\closedqspline, 63
\closegraphsfile, 11
cmyk(c,m,y,k), 27

\cmykcolorarray, 67
\coil, 38
\colorarray, 67
\coloredlines, 48
\computedspline, 64
\connect, 32
\convexcurve, 24
\convexcyclic, 24
\coords, 56
\corkscrew, 38
Cross, 14
Crossbar, 14, 34

\cspline, 63
\curve, 23
\cutoffafter, 75
\cutoffbefore, 75
\cyclic, 23

d
\darkershade, 62
\dashed, 36
\dashedlines, 48
\dashlen, 61
\dashlineset, 61
\dashpattern, 37
\datafile, 16, 45, 46
\datapointsonly, 48
debug, 7

\defaultplot, 49
\DEgraph, 44
\DEtrajectory, 44
Diamond, 14

\doaxes, 16
\dotlineset, 61
\dotsize, 62
\dotspace, 62

5 Appendices 88

\dotted, 36
\doubledraw, 36
draft, 7
\draw, 36
\drawcolor, 28
\drawpen, 60

e
\ellipse, 22
\endconnect, 32
\endcoords, 56
\endmfpfor, 71
\endmfpframe, 55
\endmfpic, 12
\endmfpimage, 70
\endmfploop, 73
\endmfpwhile, 72
\endpatharr, 67
\endtile, 70
\everyendmfpic, 13
\everymfpic, 13
\everytlabel, 50

f
\fcncurve, 24
\fcnspline, 64
\fdef, 41
figure macro, 30
\fillcolor, 28
fillcolor, 38, 39
final, 7
\fullellipse, 23
\function, 42

g
\gantt, 25
\ganttbar, 26
\gclear, 38
\gclip, 39
\gendashed, 37
\getmfpicoffset, 78, 83
\gfill, 38
\globalassignmfvalue, 74
\globalassignmpvalue, 74
\globalsetarray, 67
\globalsetmfvariable, 66
\globalsetmpvariable, 66
\graphbar, 26

gray(g), 27
\gbrace, 26
\grid, 19
\gridarcs, 19
\griddotsize, 62
\gridlines, 19
\gridpoints, 19
\gridrays, 19

h
\halfellipse, 23
\hashlen, 62
\hatch, 40
\hatchcolor, 28
\hatchspace, 62
\hatchwd, 61
\headcolor, 28
\headlen, 61
\headshape, 61
\hgridlines, 19
\histobar, 26
\histogram, 25

i
\ifmfpmpost, 78

l
\lattice, 19
\lclosed, 31
Leftbar, 14, 34
Leftharpoon, 14, 34
Lefthook, 14, 34

\levelcurve, 44
\lhatch, 40
\lightershade, 62
\lines, 15
\lmarks, 18

m
makecmyk, 28
makegray, 28

\makepercentcomment, 47
\makepercentother, 47
makergb, 28

\makesector, 32
metafont, 5
metapost, 5

\mfbezier, 64

5 Appendices 89

\mfcmd, 65
\mflist, 65
\mfobj, 57
\mfpdatacomment, 46
\mfpdataperline, 63
\mfpdefinecolor, 29
\mfpfor, 71
\mfpframe, 55
\mfpframed, 55
\mfpic, 12
\mfpiccaptionskip, 53, 63
\mfpicdebugfalse, 7
\mfpicdebugtrue, 7
\mfpicdraft, 7, 8
\mfpicfinal, 7, 8
\mfpicheight, 63
\mfpicnowrite, 7, 8
\mfpicnumber, 12
\mfpicunit, 60
\mfpicversion, 78
\mfpicwidth, 63
\mfpimage, 70
\mfplinestyle, 48
\mfplinetype, 48
\mfploop, 73
\mfpreadlog, 8
mfpreadlog, 8
\mfpuntil, 73
\mfpverbtex, 51
\mfpwhile, 72
\mfsrc, 65
\mftitle, 76
\mirror, 56
mplabels, 5
\mpobj, 57

n
named(hnamei), 27
\newfdim, 76
\newsavepic, 54
\nocenteredcaptions, 7
\noclearsymbols, 7, 15
\noclipmfpic, 6
\nomplabels, 5
\nooverlaylabels, 6
\noraggedcaptions, 7
\norender, 35
\noship, 74

\notruebbox, 6
nowrite, 7
\numericarray, 67

o
\opengraphsfile, 11
\overlaylabels, 6
overlaylabels, 6

p
\pairarray, 67
\parafcn, 42
\parallelpath, 33
\partpath, 32
\patharr, 67
\pen, 60
\penwd, 60
\periodicfcnspline, 64
\piechart, 26
\piewedge, 26
\plot, 36
\plotdata, 47
\plotnodes, 36
\plotsymbol, 14
\plottext, 51
\plr, 23
\plrfcn, 42
\plrgrid, 19
\plrgridpoints, 19
\plrpatch, 19
\plrregion, 43
\plrvectorfield, 20
Plus, 14
\point, 14
\pointcolor, 28
\pointdef, 15
\pointedlines, 48
\pointfillfalse, 60
\pointfilltrue, 60
\pointsize, 60
\polkadot, 39
\polkadotspace, 62
\polkadotwd, 61
\polygon, 15
\polyline, 15
prefix macro, 13, 31
\preparemfpicgraphic, 77, 83
\pshcircle, 23

5 Appendices 90

\putmfpimage, 70

q
\qbclosed, 64
\qbeziers, 65
\qspline, 63
\quarterellipse, 23

r
raggedcaptions, 7
\randomizepath, 76
\randomlines, 76
\reconfigureplot, 48
\rect, 15
\reflectabout, 56
\reflectpath, 58
\regpolygon, 15
\resumeshipping, 74
\reverse, 32
RGB(R,G,B), 28
rgb(r,g,b), 27
\rgbcolorarray, 67
\rhatch, 40
Rightbar, 14, 34
Rightharpoon, 14, 34
Righthook, 14, 34
\rmarks, 18
\rotate, 56
\rotatearound, 56
\rotatepath, 58

s
\savepic, 54
\scale, 56
\scalepath, 58
\sclosed, 31
\sector, 22
\sequence, 47
\setallaxismargins, 17
\setallbordermarks, 18
\setarray, 67
\setaxismargins, 17
\setaxismarks, 18
\setbordermarks, 18
\setfilename, 77, 84
\setfilenametemplate, 77
\setmfboolean, 66
\setmfcolor, 66

\setmfnumeric, 66
\setmfpair, 66
\setmfpicgraphic, 77, 83
\setmfvariable, 66
\setmpvariable, 66
\setrender, 40
\settension, 24
\setxmarks, 18
\setymarks, 18
\shade, 39
\shadespace, 62
\shadewd, 60
\shift, 56
\shiftpath, 58
\sideheadlen, 61
\sinewave, 37
\slantpath, 58
\smoothdata, 45
SolidCircle, 14
SolidDiamond, 14
SolidSquare, 14
SolidStar, 14
SolidTriangle, 14
Square, 14
Star, 14

\startbacktext, 52
\stopbacktext, 52
\stopshipping, 74
\store, 57
\subpath, 32
\symbolspace, 62

t
\tcaption, 53
\tess, 70
\thatch, 39
\tile, 70
\tlabel, 49
\tlabelcircle, 54
\tlabelcolor, 28
\tlabelellipse, 54
\tlabeljustify, 50
\tlabeloffset, 51, 62
\tlabeloval, 54
\tlabelrect, 53
\tlabels, 49
\tlabelsep, 51, 62
\tlpathjustify, 54

5 Appendices 91

\tlpathsep, 51, 62
\tlpointsep, 51, 62
\tmarks, 18
\tmtitle, 76
\transformpath, 58
Triangle, 14
\trimpath, 32
truebbox, 6
\turn, 56
\turtle, 24

u
\unsmoothdata, 45
\usecenteredcaptions, 7
\usemetafont, 5, 8
\usemetapost, 5, 8
\usemplabels, 5
\usepic, 54
\useraggedcaptions, 7
\usetruebbox, 6
\using, 46
\usingnumericdefault, 47
\usingpairdefault, 47

v
\vectorfield, 20
\vgridlines, 19

x
\xaxis, 16
\xhatch, 40
\xmarks, 18
\xscale, 56
\xscalepath, 58
\xslant, 56
\xslantpath, 58
\xyswap, 56
\xyswappath, 58

y
\yaxis, 16
\ymarks, 18
\yscale, 56
\yscalepath, 58
\yslant, 56
\yslantpath, 58

z
\zigzag, 37

\zscale, 56
\zslant, 56

5 Appendices 92

5.9 List of commands by type.
5.9.1 Figures
\arc, 21
\axis, 16
\axisline, 17
\belowfcn, 43
\border, 17
\brownianmotion, 76
\btwnfcn, 43
\btwnplrfcn, 43
\cbeziers, \closedcbeziers, 65
\chartbar, 26
\circle, 20
\computedspline,
\closedcomputedspline, 64

\convexcurve, \closedconvexcurve, 24
\convexcyclic, 24
\cspline, \closedcspline, 63
\curve, \closedcurve, 23
\cyclic, 23
\datafile, 45
\DEgraph, 44
\DEtrajectory, 44
\ellipse, 22
\fcncurve, 24
\fcnspline, 64
\fullellipse, 23
\function, 42
\ganttbar, 26
\gbrace, 26
\graphbar, 26
\halfellipse, 23
\histobar, 26
\levelcurve, 44
\lines, 15
\mfbezier, \closedmfbezier, 64
\mfobj, \mpobj, 57
\parafcn, 42
\periodicfcnspline, 64
\piewedge, 26
\plrfcn, 42
\plrregion, 43
\polygon, 15
\polyline, 15
\pshcircle, 23
\qbeziers, \closedqbeziers, 65
\quarterellipse, 23

\qspline, \closedqspline, 63
\rect, 15
\regpolygon, 15
\sector, 22
\tlabelcircle, 54
\tlabelellipse, 54
\tlabeloval, 54
\tlabelrect, 53
\turtle, 24

5.9.2 Renderings
\corkscrew, 38
\dashed, 36
\dotted, 36
\doubledraw, 36
\draw, 36
\gclear, 38
\gclip, 39
\gendashed, 37
\gfill, 38
\hatch, 40
\lhatch, 40
\plot, 36
\plotdata, 47
\plotnodes, 36
\polkadot, 39
\rhatch, 40
\sinewave, 37
\shade, 39
\tess, 70
\thatch, 39
\xhatch, 40
\zigzag, 37

5.9.3 Arrows
\arrow, 33
\arrowhead, 34
\arrowmid, 34
\arrowtail, 34

5.9.4 Modifying figures
\bclosed, 31
\cbclosed, 64
\connect, \endconnect, 32
\cutoffafter, 75
\cutoffbefore, 75
\lclosed, 31

5 Appendices 93

\makesector, 32
\parallelpath, 33
\partpath, 32
\qbclosed, 64
\randomizepath, 76
\randomlines, 76
\reflectpath, 58
\reverse, 32
\rotatepath, 58
\scalepath, 58
\sclosed, 31
\shiftpath, 58
\slantpath, 58
\subpath, 32
\transformpath, 58
\trimpath, 32
\xscalepath, 58
\xslantpath, 58
\xyswappath, 58
\yscalepath, 58
\yslantpath, 58

5.9.5 Lengths
\axisheadlen, 61
\dashlen, 61
\dotsize, 62
\dotspace, 62
\griddotsize, 62
\hashlen, 62
\hatchspace, 62
\headlen, 61
\mfpiccaptionskip, 63
\mfpicheight, 63
\mfpicunit, 60
\mfpicwidth, 63
\pointsize, 60
\polkadotspace, 62
\shadespace, 62
\sideheadlen, 61
\symbolspace, 62

5.9.6 Coordinate transformation
\applyT, 56
\boost, 56
\coords, \endcoords, 56
\mirror, 56
\reflectabout, 56
\rotate, 56

\rotatearound, 56
\scale, 56
\shift, 56
\turn, 56
\xscale, 56
\xslant, 56
\xyswap, 56
\yscale, 56
\yslant, 56
\zscale, 56
\zslant, 56

5.9.7 Symbols, axes, grids, marks
\axes, 16
\axis, 16
\axismarks, 18
\bmarks, 18
\doaxes, 16
\grid, 19
\gridarcs, 19
\gridlines, 19
\gridpoints, 19
\gridrays, 19
\hgridlines, 19
\lattice, 19
\lmarks, 18
\plotsymbol, 14
\plrgridpoints, 19
\plrgrid, 19
\plrpatch, 19
\plrvectorfield, 20
\point, 14
\putmfpimage, 70
\rmarks, 18
\tmarks, 18
\vectorfield, 20
\vgridlines, 19
\xaxis, 16
\xmarks, 18
\yaxis, 16
\ymarks, 18

5.9.8 Symbol names
Arrowhead, 34
Asterisk, 14
Circle, 14
Crossbar, 34
Cross, 14

5 Appendices 94

Diamond, 14
Leftbar, 34
Leftharpoon, 34
Lefthook, 34
Plus, 14
Rightbar, 34
Rightharpoon, 34
Righthook, 34
SolidCircle, 14
SolidDiamond, 14
SolidSquare, 14
SolidStar, 14
SolidTriangle, 14
Square, 14
Star, 14
Triangle, 14

5.9.9 Setting options
\clearsymbols, 15
\clipmfpic, 6
\mfpicdebugfalse, 7
\mfpicdebugtrue, 7
\mfpicdraft, 7
\mfpicfinal, 7
\mfpicnowrite, 7
\mfpreadlog, 8
\nocenteredcaptions, 7
\noclearsymbols, 15
\noclipmfpic, 6
\nomplabels, 5
\nooverlaylabels, 6
\noraggedcaptions, 7
\notruebbox, 6
\overlaylabels, 6
\usecenteredcaptions, 7
\usemetafont, 5
\usemetapost, 5
\usemplabels, 5
\useraggedcaptions, 7
\usetruebbox, 6

5.9.10 Setting values
\axismargin, 17
\darkershade, 62
\dashlineset, 61
\dashpattern, 37
\dotlineset, 61
\drawpen, 60

\globalsetmfvariable, 66
\hatchwd, 61
\headshape, 61
\lightershade, 62
\mfpicnumber, 12
\mfplinestyle, 48
\mfplinetype, 48
\pen, 60
\penwd, 60
\polkadotwd, 61
\setallaxismargins, 17
\setallbordermarks, 18
\setaxismargins, 17
\setaxismarks, 18
\setbordermarks, 18
\setmfboolean, 66
\setmfcolor, 66
\setmfnumeric, 66
\setmfpair, 66
\setmfvariable, 66
\settension, 24
\setxmarks, 18
\setymarks, 18
\shadewd, 60

5.9.11 Setting colors
\backgroundcolor, 28
\drawcolor, 28
\fillcolor, 28
\hatchcolor, 28
\headcolor, 28
\mfpdefinecolor, 29
\pointcolor, 28
\tlabelcolor, 28

5.9.12 Defining arrays
\barchart, 25
\bargraph, 25
\colorarray, 67
\gantt, 25
\globalsetarray, 67
\histogram, 25
\mfpbarchart, 25
\mfpbargraph, 25
\mfpgantt, 25
\mfphistogram, 25
\mfppiechart, 26
\numericarray, 67

5 Appendices 95

\pairarray, 67
\patharr, \endpatharr, 67
\piechart, 26
\setarray, 67

5.9.13 Changing behavior
\coloredlines, 48
\dashedlines, 48
\datapointsonly, 48
\defaultplot, 49
\everytlabel, 50
\everymfpic, \everyendmfpic, 13
\makepercentcomment, 47
\makepercentother, 47
\mfpdatacomment, 46
\mfpdataperline, 63
\mfpverbtex, 51
\noship, 74
\pointedlines, 48
\pointfillfalse, \pointfilltrue, 60
\reconfigureplot, 48
\resumeshipping, 74
\setrender, 40
\smoothdata, 45
\stopshipping, 74
\tlabeljustify, 50
\tlabeloffset, 51
\tlabelsep, 51
\tlpathjustify, 54
\tlpathsep, 51
\tlpointsep, 51
\unsmoothdata, 45
\using, 46
\usingnumericdefault, 47
\usingpairdefault, 47

5.9.14 Files and environments
\closegraphsfile, 11
\mfpframe, \endmfpframe, 55
\mfpic, \endmfpic, 12
\opengraphsfile, 11
\setfilename, 77
\setfilenametemplate, 77

5.9.15 Text
\axislabels, 51
\plottext, 51
\startbacktext, 52
\stopbacktext, 52

\tcaption, 53
\tlabel, 49
\tlabels, 49

5.9.16 Miscellaneous
\assignmfvalue, \assignmpvalue, 74
\fdef, 41
\getmfpicoffset, 78
\globalassignmfvalue,
\globalassignmpvalue, 74

\ifmfpmpost, 78
\mfcmd, 65
\mflist, 65
\mfmode, 74
\mfpfor, \endmfpfor, 71
\mfpframed, 55
\mfpicversion, 78
\mfpimage, \endmfpimage, 70
\mfploop, \endmfploop, 73
\mfpuntil, 73
\mfpwhile, \endmfpwhile, 72
\mfresolution, 74
\mfsrc, 65
\mftitle, 76
\newfdim, 76
\newsavepic, 54
\plr, 23
\pointdef, 15
\preparemfpicgraphic, 77
\savepic, 54
\sequence, 47
\setmfpicgraphic, 77
\store, 57
\tile, \endtile, 70
\tmtitle, 76
\usepic, 54

	Introduction
	Why?
	Who?
	What?
	How?

	Options.
	metapost, metafont, \usemetapost, \usemetafont.
	mplabels, \usemplabels, \nomplabels.
	overlaylabels, \overlaylabels, \nooverlaylabels.
	truebbox, \usetruebbox, \notruebbox.
	clip, \clipmfpic, \noclipmfpic.
	centeredcaptions, \usecenteredcaptions, \nocenteredcaptions.
	raggedcaptions, \useraggedcaptions, \noraggedcaptions.
	debug, \mfpicdebugtrue, \mfpicdebugfalse.
	clearsymbols, \clearsymbols, \noclearsymbols.
	draft, final, nowrite, \mfpicdraft, \mfpicfinal, \mfpicnowrite.
	mfpreadlog, \mfpreadlog.
	Scoping Rules.

	Metafont and Metapost Data Types.
	Numerics and pairs.
	Colors.
	Paths, pictures and booleans.

	The Macros.
	Files and Environments.
	Common objects.
	Points, lines, and rectangles
	A word about list arguments
	Axes, axis marks, and grids
	Circles, arcs and ellipses
	Curves
	Bar charts and pie charts
	Braces

	Colors in mfpic.
	Metapost color functions
	Establishing mfpic default colors
	Defining a color name
	Metafont colors

	Modifying the figures.
	Closure of paths
	Reversal, connection and other path modifications
	Arrows

	Rendering figures.
	Drawing
	Shading, filling, erasing, clipping, hatching
	Changing the default rendering
	Examples

	Functions and Plotting.
	Defining functions
	Plotting functions
	Plotting external data files

	Labels and Captions.
	Setting text
	Curves surrounding text

	Saving and Reusing an mfpic Picture.
	Picture Frames.
	Affine Transforms.
	Transforming the Metafont coordinate system
	Transforming paths

	Parameters.
	For Advanced Users.
	Splines
	Béziers
	Raw Metafont code
	Creating Metafont variables
	Miscelaneous pair expressions
	Manipulating Metafont picture variables
	Metafont loops
	Miscellaneous

	Appendices
	Acknowledgements.
	Changes History.
	Summary of Options.
	Plotting Styles for \plotdata.
	Special Considerations When Using Metafont.
	Special Considerations When Using Metapost.
	Required support
	Metapost is not Metafont
	Graphic inclusion

	Mfpic and the Rest of the World.
	The literature
	Other programs

	Index of commands, options and parameters.
	List of commands by type.
	Figures
	Renderings
	Arrows
	Modifying figures
	Lengths
	Coordinate transformation
	Symbols, axes, grids, marks
	Symbol names
	Setting options
	Setting values
	Setting colors
	Defining arrays
	Changing behavior
	Files and environments
	Text
	Miscellaneous

