Math 3103 Combinatorics (Luecking)
(Please print clearly)
Practice Quiz (solutions)

1. Suppose a certain geometric figure has the cycle index polynomial

$$
P_{G}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{1}{4}\left(x_{1}^{4}+2 x_{4}+x_{2}^{2}\right) .
$$

Suppose also, with 3 colors, the pattern inventory

$$
P_{G}\left(r+w+b, r^{2}+w^{2}+b^{2}, r^{3}+w^{3}+b^{3}, r^{4}+w^{4}+b^{4}\right)
$$

is equal to

$$
\begin{aligned}
r^{4} & +w^{4}+b^{4}+r^{3} w+r^{3} b+w^{3} r+w^{3} b+b^{3} r+b^{3} w+2 r^{2} w^{2}+2 r^{2} b^{2}+2 w^{2} b^{2} \\
& +3 r^{2} w b+3 w^{2} r b+3 b^{2} r w .
\end{aligned}
$$

(a) How many distinguishable colorings use all three colors?
(b) How many distinguishable colorings use exactly 2 colors?
(c) How mant distinguishable colorings don't use white?

Ans: (a) Adding the coefficients of the last 3 terms: 9 distinguishable colorings.
Ans: (b) Adding the coefficients of the 4th through 12th terms:
12 distinguishable colorings.
Ans: (c) Adding the coefficients of the terms $r^{4}+b^{4}+r^{3} b+b^{3} r+2 r^{2} b^{2}$:
6 distinguishable colorings.

