Note: For the 2 figures below I have given the group of rigid motions, expressed as permutations of the vertex labels. Determine the number of distinguishable colorings of the vertice (a) when there are 3 colors to choose from, and (b) when there are 5 colors to choose from. Do not simplify either of these.
1.

$\{(1)(2)(3)(4)(5)(6),(14)(25)(36),(13)(2)(46)(5),(16)(25)(34)\}$

Ans: (a) $\frac{1}{4}\left(3^{6}+3^{3}+3^{4}+3^{3}\right)$,
(b) $\frac{1}{4}\left(5^{6}+5^{3}+5^{4}+5^{3}\right)$
2.

$$
G=\{(1)(2)(3)(4),(13)(24),(1)(24)(3),(13)(2)(4)\}
$$

Ans: (a) $\frac{1}{4}\left(3^{4}+3^{2}+3^{3}+3^{3}\right)$,
(b) $\frac{1}{4}\left(5^{4}+5^{2}+5^{3}+5^{3}\right)$
3. The following group of permutations represents the allowed rigid motions of a certain figure with 5 vertices.

$$
G=\{(1)(2)(3)(4)(5),(1234)(5),(13)(24)(5),(1432)(5)\}
$$

(a) Write out the cycle index polynomial for G.

Ans: $\frac{1}{4}\left(x_{1}^{5}+2 x_{1} x_{4}+x_{1} x_{2}^{2}\right)$
(b) How many distinguishable ways are there to color the vertices if 2 colors are available?

Do not simplify.
Ans: $\frac{1}{4}\left(2^{5}+2 \cdot 2^{2}+2^{3}\right)$

