Note: Unless otherwise indicated, you need not show any work.

1. Both of the following are group codes. For each one: (i) determine the minimum nonzero weight of the code words then, using this value, determine (ii) the maximum number of errors that can reliably be detected and (iii) the maximum number of errors that can reliably be corrected.
(a) $\mathscr{C}_{2}=\{(0000000000),(1001001011),(0100101101),(0010011110)$,

$$
(1101100110),(1011010101),(0110110011),(1111111000)\} \text { in } \mathbb{Z}_{2}^{10}
$$

Ans: (i) The nonzero weights are 5, 6 and 7 . The minimum is 5 . This is the minimum distance so: (ii) 4 errors can always be detected. (iii) 2 errors can always be corrected.
(b) $\mathscr{C}_{1}=\{(0000000),(1001011),(0100111),(0011101)$,

$$
(1101100),(1010110),(011 \text { 1010 }),(1110001)\} \text { in } \mathbb{Z}_{2}^{7}
$$

Ans: (i) The minimum nonzero weight is 4. This is the minimum distance so: (ii) 3 errors can always be detected. (iii) 1 error can always be corrected.
2. The following is a generator matrix for a group code: $G=\left(\begin{array}{llll|lll}1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1\end{array}\right)$
Do the following.
(a) Find the code words corresponding to the messages $v=(1100)$ and $w=(1001)$.

Ans: $\quad v G=(1100011)$ and $w G=(1001101)$
(b) Write out the parity check matrix H corresponding to G.

Ans: $H=\left(\begin{array}{llll|lll}1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right)$
(c) For the received words (i) $r=(1000001)$ and (ii) $s=(1000100)$ find $H r^{\text {tr }}$ and $H s^{\mathrm{tr}}$, then use those results to correct both if there is an error. If you decide this can't be done, give a reason.

Ans: $H r^{\mathrm{tr}}=(111)^{\mathrm{tr}}$, the 3rd column of H, so change the 3rd bit of r to get (1010001) $H s^{\operatorname{tr}}=(010)^{\operatorname{tr}}$, the 6 th column of H, so change the 6 th bit of s to get (1000110).
(d) If possible, decode the corrected words in part (c) to obtain their original messages.

Ans: For r : (1010), and for $s:(1000)$.

