Math 3103 Combinatorics (Luecking)
Tenth Quiz (solutions)

NAME:
(Please print clearly)
Due March 25, 2024

1. Answer the following about \mathbb{Z}_{2024}. These answers must be completely simplified.
(a) Given the prime factorization $2024=2^{3} \cdot 11 \cdot 23$, how many units does this ring have?

Ans: $\phi(2024)=2^{3} \cdot 11 \cdot 23\left(\frac{1}{2}\right)\left(\frac{10}{11}\right)\left(\frac{22}{23}\right)=2^{2} \cdot 10 \cdot 22=880$
(b) How many proper zero divisors?

Ans: $2024-\phi(2024)-1=2024-880-1=1143$
(c) Using the Euclidean algorithm, find the inverse of 101 in the ring \mathbb{Z}_{2024}. This answer must be an explicit element of \mathbb{Z}_{2024}.

Ans: The Euclidean algorithm gives $\left\{\begin{array}{c}2024=20(101)+4 \\ 101=25(4)+1\end{array} \quad\right.$ or $\quad\left\{\begin{array}{l}n=20 k+r_{1} \\ k=25 r_{1}+r_{2}\end{array}\right.$ where $n=2024, k=101, r_{1}=4$ and $r_{2}=1$.

Eliminate r_{1} and solve for r_{2} to get $r_{2}=501 k-25 n$ or $1=501(101)-25(2024)$.
This says $1=501 \cdot 101$ in \mathbb{Z}_{2024} and so $101^{-1}=501$.

