Eighth Quiz (solutions)

For each of the following nonhomogeneous recurrence relations with initial conditions, do the following.

- (a) Find the homogeneous solution.
- (b) Find a particular solution.
- (c) Find the solution that satisfies the initial conditions.

1.
$$a_n - 4a_{n-1} + 4a_{n-2} = (4/9)3^n$$
, $n \ge 2$, $a_0 = 0$, and $a_1 = 0$.

Ans: (a) From $r^2 - 4r + 4 = 0$ we get a double root r = 2. So, $a_n^{(h)} = C_1 2^n + C_2 n 2^n$.

- (b) Setting $a_n = A3^n$ we get $A3^n 4A3^{n-1} + 4A3^{n-2} = (4/9)3^n$, from which A/9 = 4/9 and A = 4. So, $a_n^{(p)} = (4)3^n$.
- (c) From $a_n = C_1 2^n + C_2 n 2^n + (4) 3^n$ we get $C_1 + 4 = 0$ and $2C_1 + 2C_2 + 12 = 0$ giving $C_1 = -4$ and $C_2 = -2$. So, $a_n = -(4) 2^n 2n 2^n + (4) 3^n$.

2.
$$a_n - 5a_{n-1} + 4a_{n-2} = 6$$
, $n \ge 2$, $a_0 = 0$, and $a_1 = 0$.

Ans: (a) From $r^2 - 5r + 4 = 0$ we get roots 1 and 4. So, $a_n^{(h)} = C_1 + C_2 4^n$.

- (b) Setting $a_n = An$ we get An 5A(n-1) + 4A(n-2) = 6, from which -3A = 6 and A = -2. So, $a_n^{(p)} = -2n$.
- (c) From $a_n = C_1 + C_2 4^n 2n$ we get $C_1 + C_2 = 0$ and $C_1 + 4C_2 2 = 0$ giving $C_1 = -2/3$ and $C_2 = 2/3$. So, $a_n = -2/3 + (2/3)4^n 2n$.