1. Answer (a)-(c) below for the following recurrence relation problem.

$$
\begin{aligned}
& a_{n}-4 a_{n-1}+4 a_{n-2}=0 \quad(n \geq 2), \\
& a_{0}=1, \quad a_{1}=7
\end{aligned}
$$

(a) Write down the characteristic equation and its roots:

Ans: $r^{2}-4 r+4=0$ with double root $r=2,2$
(b) Write down a general solution:

Ans: $a_{n}=C_{1} 2^{n}+C_{2} n 2^{n}$
(c) Find the solution that satisfies the initial conditions.

Ans: The initial conditions give $C_{1}=1$ and $2 C_{2}+2 C_{2}=7$ so that $C_{2}=5 / 2$. Thus

$$
a_{n}=2^{n}+\frac{5}{2} n 2^{n}
$$

2. Answer (a)-(c) below for the following recurrence relation problem.

$$
\begin{aligned}
& a_{n}-4 a_{n-1}+5 a_{n-2}=0 \quad(n \geq 2), \\
& a_{0}=2, \quad a_{1}=6
\end{aligned}
$$

(a) Write down the characteristic equation and its roots:

Ans: $r^{2}-4 r+5=0$ with roots $r=2 \pm 1 i$
(b) Write down a general solution:

Ans: Either $a_{n}=C_{1}(2+i)^{n}+C_{2}(2-i)^{n}$ or

$$
a_{n}=5^{n / 2}\left(B_{1} \cos (\theta n)+B_{2} \sin (\theta n)\right), \text { where } \theta=\cos ^{-1}(2 / \sqrt{5})
$$

(c) Find the solution that satisfies the initial conditions.

Ans: Complex form: the initial conditions give $C_{1}+C_{2}=2$ and $(2+i) C_{2}+(2-i) C_{2}=6$ so that

$$
\begin{aligned}
& C_{1}-C_{2}=2 / i \text { giving } C_{1}=1+1 / i \text { and } C_{2}=1-1 / i . \text { Thus } \\
& \quad a_{n}=(1+1 / i)(2+i)^{n}+(1-1 / i)(2-i)^{n}
\end{aligned}
$$

Altenatively, $B_{1}=2$ and $2 B_{1}+B_{2}=6$ gives $B_{2}=2$ and so

$$
a_{n}=5^{n / 2}(2 \cos (\theta n)+2 \sin (\theta n))
$$

