Math 3103 Combinatorics (Luecking)
NAME:
(Please print clearly)
Sixth Quiz (solutions)
Due February 28, 2024

1. For each of the following first-order recurrence relations, find the solution that satisfies the given initial condition.
(a) $a_{n}=a_{n-1}+6, \quad n \geq 1, \quad$ Ans: $a_{n}=5+6 n$.

$$
a_{0}=5 .
$$

(b) $a_{n}=7 a_{n-1}, \quad n \geq 1$, Ans: $a_{n}=8\left(7^{n}\right)$. $a_{0}=8$.
(c) $a_{n}=(3 n+4) a_{n-1}, \quad n \geq 1$, $a_{0}=2$.

Ans: $a_{n}=(3(1)+4)(3(2)+4)(3(3)+4) \cdots(3 n+4) 2$. Or $a_{n}=2 \prod_{j=1}^{n}(3 j+4)$.
(d) $a_{n}=a_{n-1}+9 n^{2}, \quad n \geq 1$, $a_{0}=1$.

Ans: $a_{n}=1+9\left(1^{2}\right)+9\left(2^{2}\right)+9\left(3^{2}\right)+\cdots+9 n^{2}$. Or $a_{n}=1+\sum_{j=1}^{n} 9 j^{2}$.
2. For the following second-order recurrence relation,

$$
\begin{aligned}
& a_{n}-a_{n-1}-2 a_{n-2}=0, \quad n \geq 2, \\
& a_{0}=2, \quad a_{1}=7
\end{aligned}
$$

(a) write out the characteristic equation, Ans: $r^{2}-r-2=0$.
(b) find the roots of the characteristic equation, Ans: $r=-1$ and $r=2$.
(c) and write the general solution of the recurrence relation. Ans: $a_{n}=C_{1}(-1)^{n}+C_{2} 2^{n}$

