(Please print clearly)
Fifth Quiz (solutions)
Due February 16, 2024

1. This table represents possible seating of 5 people among 8 seats. A shaded square represents a forbidden seat assignment. The rook polynomial of the shaded squares is

$$
1+9 x+28 x^{2}+36 x^{3}+20 x^{4}+4 x^{5}
$$

Using this information, how many allowable ways are there to seat all five people? Your final answer should be in elementary form.

Ans: $\quad \frac{8!}{3!}-9 \frac{7!}{3!}+28 \frac{6!}{3!}-36 \frac{5!}{3!}+20 \frac{4!}{3!}-4 \frac{3!}{3!}$
2. Consider the following equation. The variables w_{1}, w_{2}, and w_{3} are integers that must satisfy the given conditions.

$$
\begin{aligned}
& w_{1}+w_{2}+w_{3}=n \\
& 10 \leq w_{1} \quad \longrightarrow x^{10}+x^{11}+\cdots=\frac{x^{10}}{1-x} \\
& 0 \leq w_{2} \leq 19 \longrightarrow 1+x+x^{2}+\cdots+x^{19}=\frac{1-x^{20}}{1-x} \\
& 10 \leq w_{3} \leq 29 \longrightarrow x^{10}+x^{11}+\cdots+x^{29}=\frac{x^{10}-x^{30}}{1-x}
\end{aligned}
$$

(a) Write out the generating function for the number of solutions of this equation. Write your answer as a quotient in which the denominator is a power of $(1-x)$ and the numerator is a polynomial written out as a sum of different powers of x.

Ans: The generating functions for each variable are given above. The generating function for the given problem is the product of these: $F(x)=\frac{x^{20}-2 x^{40}+x^{60}}{(1-x)^{3}}$.
(b) Use the result in part (a) to find the number of solutions when $n=80$.

Ans: $F(x)=\left(x^{20}-2 x^{40}+x^{60}\right) \sum_{j=0}^{\infty}\binom{j+2}{j} x^{j}$, and the terms that produce x^{80} are:

$$
x^{20}\binom{62}{60} x^{60}-2 x^{40}\binom{42}{40} x^{40}+x^{60}\binom{22}{20} x^{20}=\left[\binom{62}{60}-2\binom{42}{40}+\binom{22}{20}\right] x^{80}
$$

so the answer is: $\binom{62}{60}-2\binom{42}{40}+\binom{22}{20}$.

