Math 3083 Linear Algebra (Luecking)
NAME:
(Please print clearly)
Due April 22, 2023

1. For the matrix $A=\left(\begin{array}{rrr}4 & 0 & -3 \\ 0 & 3 & 0 \\ 2 & 0 & -1\end{array}\right)$, which has eigenvalues $\lambda=1,2$ and 3 , find matrices S and D such that S is invertible and D is diagonal and $D=S^{-1} A S$. (Note: you are not required to find S^{-1}, although that would be one way to check your answers.)

Ans: For $\lambda=1$, the matrix $A-1 I=\left(\begin{array}{rrr}3 & 0 & -3 \\ 0 & 2 & 0 \\ 2 & 0 & -2\end{array}\right)$ reduces to $\left(\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$. So, the eigenspace consists of $\mathbf{x}=\left(\begin{array}{c}\alpha \\ 0 \\ \alpha\end{array}\right)$, and a basis is $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$. For $\lambda=2$, the matrix $A-2 I=\left(\begin{array}{rrr}2 & 0 & -3 \\ 0 & 1 & 0 \\ 2 & 0 & -3\end{array}\right)$ reduces to $\left(\begin{array}{ccc}1 & 0 & -3 / 2 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$. So, the eigenspace consists of all $\mathbf{x}=\left(\begin{array}{c}3 \alpha / 2 \\ 0 \\ \alpha\end{array}\right)$ and a basis is $\left(\begin{array}{l}3 \\ 0 \\ 2\end{array}\right)$. For $\lambda=3$, the matrix $A-3 I=\left(\begin{array}{rrr}1 & 0 & -3 \\ 0 & 0 & 0 \\ 2 & 0 & -4\end{array}\right)$ reduces to $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$. So, the eigenspace consists of all $\mathbf{x}=\left(\begin{array}{c}0 \\ \alpha \\ 0\end{array}\right)$ and a basis is $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$.
Therefore, $S=\left(\begin{array}{lll}1 & 3 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 0\end{array}\right)$ and $D=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$.

