Math 3083 Linear Algebra (Luecking)
NAME:
(Please print clearly)
Due April 15, 2024

1. Let $\mathbf{x}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right), \quad \mathbf{x}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right)$, and $\mathbf{x}_{3}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right)$. Using the standard scalar product for the inner product on \mathbb{R}^{4}, apply the Gram-Schmidt process to find an orthonormal basis for $\operatorname{Span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)$. (Don't show too much detail. Fit your answer below.)

Ans: $\mathbf{v}_{1}=\mathbf{x}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right) . \quad \mathbf{v}_{2}=\mathbf{x}_{2}-\mathbf{p}_{1}=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right)-\frac{1}{2}\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{c}-1 / 2 \\ 1 \\ 1 \\ 1 / 2\end{array}\right)$.
$\mathbf{v}_{3}=\mathbf{x}_{3}-\mathbf{p}_{2}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right)-\frac{1}{2}\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right)-\frac{3 / 2}{5 / 2}\left(\begin{array}{c}-1 / 2 \\ 1 \\ 1 \\ 1 / 2\end{array}\right)=\left(\begin{array}{c}4 / 5 \\ 2 / 5 \\ 2 / 5 \\ -4 / 5\end{array}\right)$.
Finally, divide each by its norm: $\mathcal{B}=\left[\left(\begin{array}{c}1 / \sqrt{2} \\ 0 \\ 0 \\ 1 / \sqrt{2}\end{array}\right),\left(\begin{array}{c}-1 / \sqrt{10} \\ 2 / \sqrt{10} \\ 2 / \sqrt{10} \\ 1 / \sqrt{10}\end{array}\right),\left(\begin{array}{c}2 / \sqrt{10} \\ 1 / \sqrt{10} \\ 1 / \sqrt{10} \\ -2 / \sqrt{10}\end{array}\right)\right]$
2. (a) Find the eigenvalues of the matrix $A=\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 2 & 1\end{array}\right)$. Ans: $\operatorname{det}(A-\lambda I)=$ $(3-\lambda)\left(\lambda^{2}-3 \lambda\right)=0$. Solve to get $\lambda=3,3,0$.
(b) For each eigenvalue of A, find a basis for its eigenspace.

Ans: For $\lambda=3$, the matrix $A-3 I=\left(\begin{array}{rrr}0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 2 & -2\end{array}\right)$ reduces to $\left(\begin{array}{rrr}0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. So, the eigenspace consists of $\mathbf{x}=\left(\begin{array}{l}\alpha \\ \beta \\ \beta\end{array}\right)$, and a basis is $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$. For $\lambda=0$, the matrix $A-0 I=\left(\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 2 & 1\end{array}\right)$ reduces to $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 / 2 \\ 0 & 0 & 0\end{array}\right)$. So, the eigenspace consists of all $\mathbf{x}=\left(\begin{array}{c}0 \\ -\alpha / 2 \\ \alpha\end{array}\right)$ and a basis is $\left(\begin{array}{c}0 \\ -1 / 2 \\ 1\end{array}\right)$.

