The following problems are based in \mathbb{R}^{n} for some values of n. Use the standard scalar product when necessary.

1. For the vectors $\mathbf{u}=\left(\begin{array}{l}1 \\ 2 \\ 2 \\ 0\end{array}\right)$ and $\mathbf{v}=\left(\begin{array}{r}1 \\ 1 \\ -1 \\ 1\end{array}\right)$, let $S=\operatorname{Span}(\mathbf{u}, \mathbf{v})$ and find a basis for S^{\perp}. Hint: this comes down to solving a system of equations.

Ans: We need to solve the system: $\mathbf{u}^{T} \mathbf{x}=0, \quad \mathbf{v}^{T} \mathbf{x}=0$.
The augmented matrix of this system is $\left(\begin{array}{rrrr|r}1 & 2 & 2 & 0 & 0 \\ 1 & 1 & -1 & 1 & 0\end{array}\right)$.
Reduced echelon form is $\left(\begin{array}{rrrr|r}1 & 0 & -4 & 2 & 0 \\ 0 & 1 & 3 & -1 & 0\end{array}\right)$.
This gives the equations: $x_{1}=4 x_{3}-2 x_{4}$ and $x_{2}=-3 x_{3}+x_{4}$. Let $x_{3}=\alpha$ and $x_{4}=\beta$; the solutions are $\mathbf{x}=\left(\begin{array}{c}4 \alpha-2 \beta \\ -3 \alpha+\beta \\ \alpha \\ \beta\end{array}\right)$ and the basis is: $\left(\begin{array}{c}4 \\ -3 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-2 \\ 1 \\ 0 \\ 1\end{array}\right)$.
2. Find the least squares solution $\hat{\mathbf{x}}$ for the inconsistent system:

$$
\begin{aligned}
x_{1}-x_{2}-2 x_{3} & =1 \\
x_{1}-x_{2} & =3
\end{aligned}
$$

$$
2 x_{1}+x_{2}+x_{3}=7
$$

$$
+x_{2} \quad x_{3}=5
$$

Ans: Let $A=\left(\begin{array}{rrr}1 & -1 & -2 \\ 1 & -1 & 0 \\ 2 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{l}1 \\ 3 \\ 7 \\ 5\end{array}\right)$ so the system is $A \mathbf{x}=\mathbf{b}$, and we solve instead $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$. That is, $\quad\left(\begin{array}{lll}6 & 0 & 0 \\ 0 & 4 & 4 \\ 0 & 4 & 6\end{array}\right) \mathbf{x}=\left(\begin{array}{r}18 \\ 8 \\ 10\end{array}\right)$. Row reduce: $\left(\begin{array}{rrr|r}6 & 0 & 0 & 18 \\ 0 & 4 & 4 & 8 \\ 0 & 4 & 6 & 10\end{array}\right) \rightarrow\left(\begin{array}{lll|l}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right)$. This has solution $\hat{\mathbf{x}}=\left(\begin{array}{l}3 \\ 1 \\ 1\end{array}\right)$. Check this by verifying that the residual $\mathbf{b}-A \hat{\mathbf{x}}=\left(\begin{array}{r}1 \\ 1 \\ -1 \\ 3\end{array}\right)$ is orthogonal to the columns of A.

