Math 3083 Linear Algebra (Luecking)

Ninth Quiz (solutions)

1. Let
$$\mathbf{u} = \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$

(a) Find the scalar product of \mathbf{u} and \mathbf{v} .

Ans:
$$\mathbf{u}^T \mathbf{v} = (3)(1) + (-1)(-2) + (4)(2) = 3 + 2 + 8 = 13.$$

(b) Find $\|\mathbf{u}\|$ and $\|\mathbf{v}\|$.

Ans:
$$\|\mathbf{u}\| = \sqrt{(3)^2 + (-1)^2 + (4)^2} = \sqrt{9 + 1 + 16} = \sqrt{26}$$
 and
 $\|\mathbf{v}\| = \sqrt{(1)^2 + (-2)^2 + (2)^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3.$

(c) If θ is the angle between **u** and **v**, find $\cos \theta$. (Do not find θ itself.)

Ans:
$$\cos \theta = \frac{\mathbf{u}^T \mathbf{v}}{\|\mathbf{u}\| \cdot \|\mathbf{v}\|} = \frac{13}{3\sqrt{26}}$$
. Or $\frac{\sqrt{26}}{6}$. But not 0.8498.

(d) Find the vector projection of \mathbf{u} onto \mathbf{v} .

Ans:
$$\mathbf{p} = \frac{\mathbf{u}^T \mathbf{v}}{\|\mathbf{v}\|^2} \mathbf{v} = \frac{13}{9} \mathbf{v} = \begin{pmatrix} 13/9 \\ -26/9 \\ 26/9 \end{pmatrix}$$
. Note: not $\begin{pmatrix} 1.44 \\ -2.89 \\ 2.89 \end{pmatrix}$.

(e) Find any nonzero vector in \mathbb{R}^3 that is orthogonal to both **u** and **v**.

 $\begin{cases} x_1 - 2x_2 + 2x_3 = 0\\ 3x_1 - 1x_2 + 4x_3 = 0 \end{cases}$ **Ans:** Such a vector must be a solution of the following system:

 $x_1 = (-6/5)x_3$ This gives us, $x_2 = (2/5)x_3$

Now pick any nonzero value of x_3 . For example, if $x_3 = 5$ then $\mathbf{x} = \begin{bmatrix} -6\\ 2\\ 5 \end{bmatrix}$.

An alternative is to compute $\mathbf{u} \times \mathbf{v} = \begin{pmatrix} 6 \\ -2 \\ -5 \end{pmatrix}$. Of course, these two are scalar multiples of each other. The cross product $\mathbf{u} \times \mathbf{v}$ makes sense only in \mathbb{R}^3 whereas solving a system can be done in any \mathbb{R}^n .

NAME: (Please print clearly) Due March 29, 2024