Math 3083 Linear Algebra (Luecking)

NAME:______(Please print clearly)

Eighth Quiz (solutions)

Due March 11, 2024

1. Let T be the linear transformation from \mathbb{R}^3 to \mathbb{R}^2 given by $T(\mathbf{x}) = \begin{pmatrix} x_1 - 2x_2 + 3x_3 \\ 2x_1 - x_2 \end{pmatrix}$, where $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$. Find the matrix A that satisfies $A\mathbf{x} = T(\mathbf{x})$ for all \mathbf{x} in \mathbb{R}^3 .

Ans: The columns of A are the three vectors $T(\mathbf{e}_1) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $T(\mathbf{e}_2) = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$, and $T(\mathbf{e}_3) = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$, so $A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -1 & 0 \end{pmatrix}$.

- 2. Let \mathcal{E} be the standard ordered basis for \mathbb{R}^3 and let $\mathcal{C} = \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \end{pmatrix} \end{bmatrix}$, an ordered basis for \mathbb{R}^2 . Let T be the linear transformation defined in problem 1. Find the representing matrix for T relative to \mathcal{E} and \mathcal{C} .
- Ans: The matrix obtained above is the representing matrix relative to the standard bases on both vector spaces. It therefore suffices to multiply UA, where U is the transition matrix from the standard basis of \mathbb{R}^2 to \mathcal{C} :

 $U = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix}.$ That is, the representing matrix is *UA* or

$$\begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 & 3 \\ 2 & -1 & 0 \end{pmatrix} = \begin{pmatrix} -5 & 1 & 3 \\ 2 & -1 & 0 \end{pmatrix}$$