Math 3083 Linear Algebra (Luecking)
NAME:
(Please print clearly)
Eighth Quiz (solutions)
Due March 11, 2024

1. Let T be the linear transformation from \mathbb{R}^{3} to \mathbb{R}^{2} given by $T(\mathbf{x})=\binom{x_{1}-2 x_{2}+3 x_{3}}{2 x_{1}-x_{2}}$, where $\mathbf{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$. Find the matrix A that satisfies $A \mathbf{x}=T(\mathbf{x})$ for all \mathbf{x} in \mathbb{R}^{3}.

Ans: The columns of A are the three vectors $T\left(\mathbf{e}_{1}\right)=\binom{1}{2}, T\left(\mathbf{e}_{2}\right)=\binom{-2}{-1}$, and

$$
T\left(\mathbf{e}_{3}\right)=\binom{3}{0}, \text { so } A=\left(\begin{array}{lll}
1 & -2 & 3 \\
2 & -1 & 0
\end{array}\right) .
$$

2. Let \mathcal{E} be the standard ordered basis for \mathbb{R}^{3} and let $\mathcal{C}=\left[\binom{1}{0},\binom{3}{1}\right]$, an ordered basis for \mathbb{R}^{2}. Let T be the linear transformation defined in problem 1. Find the representing matrix for T relative to \mathcal{E} and \mathcal{C}.

Ans: The matrix obtained above is the representing matrix relative to the standard bases on both vector spaces. It therefore suffices to multiply $U A$, where U is the transition matrix from the standard basis of \mathbb{R}^{2} to \mathcal{C} :
$U=\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right)^{-1}=\left(\begin{array}{rr}1 & -3 \\ 0 & 1\end{array}\right)$.
That is, the representing matrix is $U A$ or

$$
\left(\begin{array}{rr}
1 & -3 \\
0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & -2 & 3 \\
2 & -1 & 0
\end{array}\right)=\left(\begin{array}{rrr}
-5 & 1 & 3 \\
2 & -1 & 0
\end{array}\right)
$$

