Math 3083 Linear Algebra (Lucking)

NAME: (Please print clearly)

Seventh Quiz (solutions)

Due March 8, 2024

- 1. The problems below are about the matrix $A = \begin{pmatrix} 1 & 1 & -2 & 0 & 2 \\ 2 & 1 & -3 & 1 & 2 \\ 1 & 0 & -1 & 1 & 0 \\ 1 & -2 & 1 & 0 & 2 \end{pmatrix}$. It has reduced echelon form $\begin{pmatrix} 1 & 0 & -1 & 0 & 2 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$. (Note: I have done the ERO calculations for you.)
 - (a) Write down a basis for the row space of A:

Ans: Nonzero rows of the echelon form: $\{(1, 0, -1, 0, 2), (0, 1, -1, 0, 0), (0, 0, 0, 1, -2)\}$

(b) Write down a basis for the column space of A:

Ans: (b) Columns of A corresponding to leading variables:

	((1)		1	1		(0)	٦	
		2			1		1		
Ś		1	,		0	,	1		Ì
		\backslash_1		/-	-2/		$\left< 0 \right>$	J	

(c) Find the rank and nullity of A (i.e., the dimensions of the column space and null space):

Ans: rank = 3, nullity = 2.

(d) Find a basis for the nullspace of A:

Ans: The echelon form gives the following equations equivalent to $A\mathbf{x} = \mathbf{0}$:

$$\begin{array}{ccc} x_1 & -x_3 & +2x_5 = 0 \\ x_2 - x_3 & = 0 \\ x_4 - 2x_5 = 0 \end{array} \end{array} \longrightarrow \begin{cases} x_1 = x_3 - 2x_5 \\ x_2 = x_3 \\ x_4 = 2x_5 \end{cases}$$

Since x_3 and x_5 are free, putting $x_3 = 1$ and $x_5 = 0$ gives one basic solution; and putting $x_3 = 0$ and $x_5 = 1$ gives the other:

$$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} -2 \\ 0 \\ 0 \\ 2 \\ 1 \end{pmatrix}$$