Math 3083 Linear Algebra (Luecking)

NAME: (Please print clearly)

Sixth Quiz (solutions)

- 1. Let $\mathcal{E} = \left[\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right]$ be the standard ordered basis for \mathbb{R}^2 , and let \mathcal{B} be the ordered basis $\left[\begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 7 \end{pmatrix} \right]$. Find the change of basis matrix (or transition matrix) from \mathcal{E} to \mathcal{B} .
- Ans: The matrix $S = \begin{pmatrix} 1 & 3 \\ 1 & 4 \end{pmatrix}$ changes basis from \mathcal{B} to \mathcal{E} . To go the other way, we need the inverse: $S^{-1} = \begin{pmatrix} 7 & -3 \\ -2 & 1 \end{pmatrix}$.
- 2. Let $\mathcal{E} = \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{bmatrix}$ be the standard ordered basis for \mathbb{R}^3 , and let \mathcal{B} be the ordered basis $\begin{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \end{bmatrix}$. Find the change of basis matrix (or transition matrix) from \mathcal{E} to \mathcal{B} .

Ans: The matrix $S = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$ changes basis from \mathcal{B} to \mathcal{E} . To go the other way, we need the inverse: $S^{-1} = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}$.

Note: If we have any two ordered bases in \mathbb{R}^3 : $\mathcal{B} = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$ and $\mathcal{C} = [\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3]$ then the problem of transition from \mathcal{C} to \mathcal{B} is the following: if a vector \mathbf{v} satisfies

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 = \beta_1 \mathbf{u}_1 + \beta_2 \mathbf{u}_2 + \beta_3 \mathbf{u}_3$$

then what matrix do I have to multiply $\begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$ by to get $\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}$?

If S is the matrix made up of columns \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 and T is the matrix made up of columns \mathbf{u}_1 , \mathbf{u}_2 , and \mathbf{u}_3 , then the above equations can be written

$$\mathbf{v} = S \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = T \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$$

and so the answer is $S^{-1}T$. In the above two problems, $C = \mathcal{E}$ is the standard basis and so T is the identity matrix.