1. Let $\mathcal{E}=\left[\binom{1}{0},\binom{0}{1}\right]$ be the standard ordered basis for \mathbb{R}^{2}, and let \mathcal{B} be the ordered basis $\left[\binom{1}{2},\binom{3}{7}\right]$. Find the change of basis matrix (or transition matrix) from \mathcal{E} to \mathcal{B}.
Ans: The matrix $S=\left(\begin{array}{ll}1 & 3 \\ 1 & 4\end{array}\right)$ changes basis from \mathcal{B} to \mathcal{E}. To go the other way, we need the inverse: $S^{-1}=\left(\begin{array}{rr}7 & -3 \\ -2 & 1\end{array}\right)$.
2. Let $\mathcal{E}=\left[\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right]$ be the standard ordered basis for \mathbb{R}^{3}, and let \mathcal{B} be the ordered basis $\left[\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\right]$. Find the change of basis matrix (or transition matrix) from \mathcal{E} to \mathcal{B}.

Ans: The matrix $S=\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$ changes basis from \mathcal{B} to \mathcal{E}. To go the other way, we need the inverse: $S^{-1}=\left(\begin{array}{rrr}1 & 1 & -1 \\ -1 & 0 & 1 \\ 0 & -1 & 1\end{array}\right)$.

Note: If we have any two ordered bases in $\mathbb{R}^{3}: \mathcal{B}=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right]$ and $\mathcal{C}=\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right]$ then the problem of transition from \mathcal{C} to \mathcal{B} is the following: if a vector \mathbf{v} satisfies

$$
\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\alpha_{3} \mathbf{v}_{3}=\beta_{1} \mathbf{u}_{1}+\beta_{2} \mathbf{u}_{2}+\beta_{3} \mathbf{u}_{3}
$$

then what matrix do I have to multiply $\left(\begin{array}{l}\beta_{1} \\ \beta_{2} \\ \beta_{3}\end{array}\right)$ by to get $\left(\begin{array}{l}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right)$?
If S is the matrix made up of columns $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} and T is the matrix made up of columns $\mathbf{u}_{1}, \mathbf{u}_{2}$, and \mathbf{u}_{3}, then the above equations can be written

$$
\mathbf{v}=S\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right)=T\left(\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right)
$$

and so the answer is $S^{-1} T$. In the above two problems, $\mathcal{C}=\mathcal{E}$ is the standard basis and so T is the identity matrix.

