Math 3083 Linear Algebra (Luecking)

Fourth Quiz (solutions)

NAME: (Please print clearly) Due February 26, 2024

1. (a) Let
$$S_1 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \middle| x_1 = x_2 + x_3$$
, and $x_2 = -x_3 \right\}$. Find a matrix A such that $S_1 = \mathcal{N}(A)$

Ans: Several possibilities, the most straightforward being $A = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$ based on S_1 being the set of solutions of the homogeneous system $x_1 - x_2 - x_3 = 0$ $x_2 + x_3 = 0$ (b) Let $S_2 = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right) \middle| x_2 x_3 \le 0 \right\}$. Find two vectors in S_2 whose sum is not in S_2 . **Ans:** One possibility: $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$ and $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$. Their sum is $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$. (c) Let $S_4 = \left\{ \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right) \middle| x_1 + x_2 \ge x_3 \right\}$. Find a vector **v** in S_4 and a scalar α such that

 $\alpha \mathbf{v}$ is not in S_4 .

Ans: Any nonzero vector in S_4 and any negative scalar. One possibility: $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and

$$\alpha = -1. \text{ The product is } -\mathbf{v} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}.$$
(d) Let $S_3 = \left\{ \begin{pmatrix} \alpha + 2\beta \\ -\alpha + \beta \\ 3\alpha + \beta \end{pmatrix} \middle| \alpha, \beta \text{ in } \mathbb{R} \right\}.$ Find two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^3 such that $S_3 = \text{Span}(\mathbf{a}, \mathbf{b}).$

Ans: One possibility: $\mathbf{a} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$, because $\alpha \mathbf{a} + \beta \mathbf{b} = \begin{pmatrix} \alpha + 2\beta \\ -\alpha + \beta \\ 3\alpha + \beta \end{pmatrix}$

- 2. For each of the example sets in problem 1, answer the following question: Is this set a subspace of \mathbb{R}^3 ?
- Ans: (a) Yes, nullspace of a matrix. (b) No, not closed under addition. (c) No, not closed under scalar multiplication. (d) Yes, span of a set of vectors.