1. (a) Let $S_{1}=\left\{\left.\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \right\rvert\, x_{1}=x_{2}+x_{3}\right.$, and $\left.x_{2}=-x_{3}\right\}$. Find a matrix $A$ such that $S_{1}=\mathcal{N}(A)$

Ans: Several possibilities, the most straightforward being $A=\left(\begin{array}{rrr}1 & -1 & -1 \\ 0 & 1 & 1\end{array}\right)$ based on $S_{1}$ being the set of solutions of the homogeneous system

$$
\begin{array}{r}
x_{1}-x_{2}-x_{3}=0 \\
x_{2}+x_{3}=0
\end{array}
$$

(b) Let $S_{2}=\left\{\left.\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \right\rvert\, x_{2} x_{3} \leq 0\right\}$. Find two vectors in $S_{2}$ whose sum is not in $S_{2}$.

Ans: One possibility: $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$. Their sum is $\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$.
(c) Let $S_{4}=\left\{\left.\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \right\rvert\, x_{1}+x_{2} \geq x_{3}\right\}$. Find a vector $\mathbf{v}$ in $S_{4}$ and a scalar $\alpha$ such that $\alpha \mathbf{v}$ is not in $S_{4}$.

Ans: Any nonzero vector in $S_{4}$ and any negative scalar. One possibility: $\mathbf{v}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $\alpha=-1$. The product is $-\mathbf{v}=\left(\begin{array}{r}-1 \\ 0 \\ 0\end{array}\right)$.
(d) Let $S_{3}=\left\{\left.\left(\begin{array}{r}\alpha+2 \beta \\ -\alpha+\beta \\ 3 \alpha+\beta\end{array}\right) \right\rvert\, \alpha, \beta\right.$ in $\left.\mathbb{R}\right\}$. Find two vectors a and $\mathbf{b}$ in $\mathbb{R}^{3}$ such that $S_{3}=\operatorname{Span}(\mathbf{a}, \mathbf{b})$.

Ans: One possibility: $\mathbf{a}=\left(\begin{array}{r}1 \\ -1 \\ 3\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$, because $\alpha \mathbf{a}+\beta \mathbf{b}=\left(\begin{array}{r}\alpha+2 \beta \\ -\alpha+\beta \\ 3 \alpha+\beta\end{array}\right)$
2. For each of the example sets in problem 1, answer the following question: Is this set a subspace of $\mathbb{R}^{3}$ ?

Ans: (a) Yes, nullspace of a matrix. (b) No, not closed under addition. (c) No, not closed under scalar multiplication. (d) Yes, span of a set of vectors.

