Math 3083 Linear Algebra (Luecking)
NAME:
(Please print clearly)
Third Quiz (solutions)
Due February 7, 2024

1. Let A_{1}, A_{2}, and B be matrices and let A be the partitioned matrix $A=\left(\frac{A_{1}}{A_{2}}\right)$. Suppose $A_{1} B=\left(\begin{array}{ll}1 & 0\end{array}\right) \quad$ and $\quad A_{2} B=\left(\begin{array}{rr}3 & 1 \\ -1 & 1 \\ 1 & 5\end{array}\right)$.
(a) How many columns does B have? Ans: Same as $A_{1} B$ and $A_{2} B: 2$ columns
(b) (i) How many rows does A_{1} have? (ii) How many rows does A_{2} have?

Ans: (i) Same as $A_{1} B: 1$ row. (ii) Same as $A_{2} B: 3$ rows.
(c) Find $A B$. Ans: $\quad A B=\left(\frac{A_{1} B}{A_{2} B}\right)=\left(\begin{array}{rr}1 & 0 \\ 3 & 1 \\ -1 & 1 \\ 1 & 5\end{array}\right)$
2. Find the following determinants. Please produce completely simplified numbers.
(a) $\left|\begin{array}{rr}2 & 3 \\ -1 & 5\end{array}\right|$
(b) $\left|\begin{array}{lll}1 & 4 & 1 \\ 5 & 5 & 3 \\ 0 & 0 & 3\end{array}\right|$ (use row 3)
(c) $\left|\begin{array}{rrrr}0 & 2 & 0 & 9 \\ 0 & 0 & 0 & 2 \\ 1 & 12 & 5 & 19 \\ 1 & 7 & 4 & 5\end{array}\right|$ (use row 2)
(d) $\left|\begin{array}{rrrr}32 & 11 & 7 & 21 \\ 1 & 1 & 2 & 3 \\ 2 & 2 & 4 & 6 \\ 41 & 7 & 10 & 5\end{array}\right|$ (compare rows)
(e) $\left|\begin{array}{rrrr}1 & 2 & 3 & 3 \\ 1 & 4 & 4 & 5 \\ 2 & 4 & 7 & 11 \\ 3 & 6 & 9 & 5\end{array}\right|$ (use a few EROs).

Ans: (a) $(2)(5)-(-1)(3)=13$
(b) Using the last row (or the partitioned matrix rule): $3 \cdot\left|\begin{array}{ll}1 & 4 \\ 5 & 5\end{array}\right|=3 \cdot(-15)=-45$.
(c) Using cofactors of row 2, the determinant equals: $2(-1)^{6}\left|\begin{array}{rrr}0 & 2 & 0 \\ 1 & 12 & 5 \\ 1 & 7 & 4\end{array}\right|$.

Then, using row 1 of that 3×3, this equalss (2) $2(-1)^{3}\left|\begin{array}{ll}1 & 5 \\ 1 & 4\end{array}\right|=-4(4-5)=4$
(d) Third row is a multiple of the second: the determinant is 0 .
(e) 3 type-III EROs turn this into: $\left|\begin{array}{rrrr}1 & 2 & 3 & 3 \\ 0 & 2 & 1 & 2 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & -4\end{array}\right|=1 \cdot 2 \cdot 1 \cdot(-4)=-8$

