1. Using only elementary row operations convert each of the following matrices to rowechelon form. Do this one ERO at a time. Note: each can be done with at most two EROs.
(a) $\left(\begin{array}{rrr}1 & 1 & 3 \\ 1 & 2 & -1 \\ 2 & 2 & 7\end{array}\right)$
Ans: $\xrightarrow{R_{2}-R_{1}}\left(\begin{array}{rrr}1 & 1 & 3 \\ 0 & 1 & -4 \\ 2 & 2 & 7\end{array}\right) \xrightarrow{R_{3}-2 R_{1}}\left(\begin{array}{rrr}1 & 1 & 3 \\ 0 & 1 & -4 \\ 0 & 0 & 1\end{array}\right)$
(b) $\left(\begin{array}{rrr}1 & -2 & 0 \\ 0 & 1 & 3 \\ 0 & 2 & 6\end{array}\right)$
Ans: $\xrightarrow{R_{3}-2 R_{2}}\left(\begin{array}{rrr}1 & -2 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right)$
(c) $\left(\begin{array}{rrr}0 & 1 & -1 \\ 2 & 4 & 6 \\ 0 & 0 & 1\end{array}\right)$
Ans: $\xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{rrr}2 & 4 & 6 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right) \xrightarrow{(1 / 2) R_{1}}\left(\begin{array}{rrr}1 & 2 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right)$
2. (a) Write out the augmented matrix for the following system of equations.

$$
\begin{aligned}
x_{1}+x_{2}+2 x_{3} & =1 \\
x_{1}+x_{2}-x_{3}-3 x_{4} & =7 \\
-2 x_{1}-2 x_{2}-x_{3}+3 x_{4} & =-8
\end{aligned} \quad \text { Ans: } \quad\left(\begin{array}{rrrr|r}
1 & 1 & 2 & 0 & 1 \\
1 & 1 & -1 & -3 & 7 \\
-2 & -2 & -1 & 3 & -8
\end{array}\right)
$$

(b) The reduced row-echelon form for that augmented matrix is $\left(\begin{array}{rrrr|r}1 & 1 & 0 & -2 & 5 \\ 0 & 0 & 1 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$.

Based on this reduced echelon form, (i) state which variables in the system are leading variables and (ii) state which ones are free variables.

Ans: (i) The leading 1's are in columns 1 and 3 so the leading variables are x_{1} and x_{3}.
(ii) That leaves x_{2} and x_{4} as the free variables.
(c) Based on the matrix in (b), find all solutions of the system. Express your solution as a quadruple, where the free variable positions contain parameters and the leading variable positions are in terms of those parameters.

Ans: From part (b), $\left\{\begin{aligned} x_{1}+x_{2} & -2 x_{4}=5 \\ x_{3}+x_{4} & =-2\end{aligned}\right.$ or $\left\{\begin{array}{l}x_{1}=5-x_{2}+2 x_{4} \\ x_{3}=-2-x_{4}\end{array}\right.$
Set the nonleading variables to arbitrary parameters: $x_{2}=\alpha$ and $x_{4}=\beta$. Then the solutions are: $(5-\alpha+2 \beta, \alpha,-2-\beta, \beta)$, where α and β can be any numbers.

