Math 3103 Combinatorics (Luecking)
Practice Quiz (solutions on page 2.)

1. The following group of permutations represents the allowed rigid motions of a certain figure with 5 vertices.

$$
G=\{(1)(2)(3)(4)(5),(123)(4)(5),(132)(4)(5),(12)(3)(45),(13)(2)(45),(1)(23)(45)\} .
$$

(a) Write out the cycle index polynomial for G.
(b) How many distinguishable ways are there to color the vertices if 4 colors are available?

Do not simplify.
2. Suppose a certain geometric figure has the cycle index polynomial

$$
P_{G}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{1}{4}\left(x_{1}^{4}+2 x_{4}+x_{2}^{2}\right) .
$$

Suppose also, with 3 colors, the pattern inventory

$$
P_{G}\left(r+w+b, r^{2}+w^{2}+b^{2}, r^{3}+w^{3}+b^{3}, r^{4}+w^{4}+b^{4}\right)
$$

is equal to

$$
\begin{aligned}
r^{4} & +w^{4}+b^{4}+r^{3} w+r^{3} b+w^{3} r+w^{3} b+b^{3} r+b^{3} w+2 r^{2} w^{2}+2 r^{2} b^{2}+2 w^{2} b^{2} \\
& +3 r^{2} w b+3 w^{2} r b+3 b^{2} r w .
\end{aligned}
$$

(a) How many distinguishable colorings use all three colors?
(b) How many distinguishable colorings use exactly 2 colors?

Ans: Problem 1.
(a) $P_{G}=\frac{1}{6}\left(x_{1}^{5}+2 x_{1}^{2} x_{3}+3 x_{1} x_{2}^{2}\right)$.
(b) $\frac{1}{6}\left(4^{5}+2 \cdot 4^{3}+3 \cdot 4^{3}\right)$.

Ans: Problem 2.
(a) Adding the coefficients of the last 3 terms: 9 distinguishable colorings.
(b) Adding the coefficients of the 4th through 12th terms:

12 distinguishable colorings.

