Math 3103 Combinatorics (Luecking)
Ninth Quiz (solutions)

NAME:
(Please print clearly)
Due October 25, 2023

1. Answer the following about \mathbb{Z}_{2009}. These answers must be completely simplified.
(a) Given the prime factorization $2009=7^{2} \cdot 41$, how many units does this ring have?

Ans: $\phi(2009)=2009\left(1-\frac{1}{7}\right)\left(1-\frac{1}{41}\right)=7^{2} \cdot 41\left(\frac{6}{7}\right)\left(\frac{40}{41}\right)=7 \cdot 6 \cdot 40=1680$
(b) How many proper zero divisors?

Ans: $2009-\phi(2009)-1=2009-1680-1=328$
(c) Using the Euclidean algorithm, find the inverse of 100 in the ring \mathbb{Z}_{2009}. This answer must be an explicit element of \mathbb{Z}_{2009}.
Ans: The Euclidean algorithm gives $\left\{\begin{array}{c}2009=20(100)+9 \\ 100=11(9)+1\end{array} \quad\right.$ or $\quad\left\{\begin{array}{l}n=20 k+r_{1} \\ k=11 r_{1}+r_{2}\end{array}\right.$ where $n=2009, k=100, r_{1}=9$ and $r_{2}=1$ Eliminate r_{1} and solve for r_{2} to get $r_{2}=221 k-11 n$ or $1=221(100)-10(2009)$. This says $1=221 \cdot 100$ in \mathbb{Z}_{2009} and so $100^{-1}=221$.

