Eighth Quiz (solutions)

1. For the following recurrence relation problem, find the generating function for the sequence a_n without actually finding a_n .

$$a_n - 3a_{n-1} + 2a_{n-2} = 3^n$$
, $n \ge 2$.
 $a_0 = 2$, $a_1 = 5$.

Ans: From the recurrence relation we get

$$\sum_{n=2}^{\infty} a_n x^n - 3 \sum_{n=2}^{\infty} a_{n-1} x^n + 2 \sum_{n=2}^{\infty} a_{n-2} x^n = \sum_{n=2}^{\infty} (3x)^n$$
or $F(x) - 2 - 5x - 3x (F(x) - 2) + 2x^2 F(x) = \frac{(3x)^2}{1 - 3x}$.

whence $F(x) - 3x F(x) + 2x^2 F(x) = 2 - x + \frac{(3x)^2}{1 - 3x}$.

and so $F(x) = \frac{2 - x + \frac{(3x)^2}{1 - 3x}}{1 - 3x + 2x^2}$.

or, simplified and factored: $F(x) = \frac{2 - 7x + 12x^2}{(1 - 3x)(1 - x)(1 - 2x)}$.

- 2. Do the following computations in the ring \mathbb{Z}_{17} . All answers must be elements of \mathbb{Z}_{17} , completely simplified. Note: the operations + and \cdot are those defined on \mathbb{Z}_{17} , **not** the usual operations on integers.
 - (a) 10 + 8 + 4
- (b) $5 \cdot 4 \cdot 10$
- (c) $(7+12) \cdot 8$

Ans: (a) (10+8)+4=1+4=5 (b) $(5\cdot 4)\cdot 10=3\cdot 10=13$

- (c) $(7+12) \cdot 8 = 2 \cdot 8 = 16$
- (d) -5

(e) 9^{-1} (trial and error is OK)

Ans: (d) -5 = 12 (because 5 + 12 = 0) (e) $9^{-1} = 2$, because $2 \cdot 9 = 1$