Math 3103 Combinatorics (Luecking)
Seventh Quiz (solutions)

NAME:
(Please print clearly)
Due October 18, 2023

For each of the following nonhomogeneous recurrence relations with initial conditions, do the following.
(a) Find the homogeneous solution.
(b) Find a particular solution.
(c) Find the solution that satisfies the initial conditions.

1. $a_{n}-4 a_{n-1}+4 a_{n-2}=(2 / 9) 3^{n}, n \geq 2$, $a_{0}=0$, and $a_{1}=0$.

Ans: (a) From $r^{2}-4 r+4=0$ we get a double root $r=2$. So, $a_{n}^{(h)}=C_{1} 2^{n}+C_{2} n 2^{n}$.
(b) Setting $a_{n}=A 3^{n}$ we get $A 3^{n}-4 A 3^{n-1}+4 A 3^{n-2}=(2 / 9) 3^{n}$, from which $A / 9=$ $2 / 9$ and $A=2$. So, $a_{n}^{(p)}=(2) 3^{n}$.
(c) From $a_{n}=C_{1} 2^{n}+C_{2} n 2^{n}+(2) 3^{n}$ we get $C_{1}+2=0$ and $2 C_{1}+2 C_{2}+6=0$ giving $C_{1}=-2$ and $C_{2}=-1$. So, $a_{n}=-(2) 2^{n}-n 2^{n}+(2) 3^{n}$.
2. $a_{n}-6 a_{n-1}+5 a_{n-2}=12, n \geq 2$, $a_{0}=0$, and $a_{1}=0$.

Ans: (a) From $r^{2}-6 r+5=0$ we get roots 1 and 5 . So, $a_{n}^{(h)}=C_{1}+C_{2} 5^{n}$.
(b) Setting $a_{n}=A n$ we get $A n-6 A(n-1)+5 A(n-2)=12$, from which $-4 A=12$ and $A=-3$. So, $a_{n}^{(p)}=-3 n$.
(c) From $a_{n}=C_{1}+C_{2} 5^{n}-3 n$ we get $C_{1}+C_{2}=0$ and $C_{1}+5 C_{2}-3=0$ giving $C_{1}=-3 / 4$ and $C_{2}=3 / 4$. So, $a_{n}=-3 / 4+(3 / 4) 5^{n}-3 n$.

