Math 3103 Combinatorics (Luecking)
NAME:
(Please print clearly)
Due October 4, 2023

1. For each of the following first-order recurrence relations, find the solution that satisfies the given initial condition.
(a) $\begin{aligned} a_{n} & =a_{n-1}+7, \quad n \geq 1, ~ \\ a_{0} & =5 .\end{aligned}$

Ans: Arithmetic progression: $a_{n}=5+7 n$.
(b) $a_{n}=3 a_{n-1}, \quad n \geq 1$,
$a_{0}=8$.
Ans: (b) Geometric progression: $a_{n}=8 \cdot 3^{n}$.
(c) $a_{n}=(2 n+3) a_{n-1}, \quad n \geq 1$, $a_{0}=4$.

Ans: (c) Succesive multiplications: $a_{n}=(2 \cdot 1+3)(2 \cdot 2+3)(2 \cdot 3+3) \cdots(2 n+3) 4$.
(d) $a_{n}=a_{n-1}+n^{3}, \quad n \geq 1$, $a_{0}=4$.

Ans: (d) Succesive additions: $a_{n}=4+1^{3}+2^{3}+3^{3}+\cdots+n^{3}$. Or $a_{n}=4+\sum_{j=1}^{n} j^{3}$.
2. For the following second-order recurrence relation and initial conditions,

$$
\begin{aligned}
& a_{n}-a_{n-1}-2 a_{n-2}=0, \quad n \geq 2, \\
& a_{0}=2, \quad a_{1}=7,
\end{aligned}
$$

(a) Write out the characteristic equation. Ans: $r^{2}-r-2=0$.
(b) Find the roots of the characteristic equation. Ans: $r=-1$ and $r=2$.
(c) Write the general solution of the recurrence relation. Ans: $a_{n}=C_{1}(-1)^{n}+C_{2} 2^{n}$
(d) Find the solution that satisfies the initial conditions.

Ans: The initial conditions become $C_{1}+C_{2}=2$, and $-C_{1}+2 C_{2}=7$, giving $C_{1}=-1$ and $C_{2}=3$ so that

$$
a_{n}=-1 \cdot(-1)^{n}+3 \cdot 2^{n} .
$$

