Math 3103 Combinatorics (Luecking)

NAME:_____(Please print clearly)

Fifth Quiz (solutions)

Due October 4, 2023

- 1. For each of the following first-order recurrence relations, find the solution that satisfies the given initial condition.
 - (a) $a_n = a_{n-1} + 7, \ n \ge 1,$ $a_0 = 5.$

Ans: Arithmetic progression: $a_n = 5 + 7n$.

(b) $a_n = 3a_{n-1}, n \ge 1,$ $a_0 = 8.$

Ans: (b) Geometric progression: $a_n = 8 \cdot 3^n$.

(c) $a_n = (2n+3)a_{n-1}, n \ge 1,$ $a_0 = 4.$

Ans: (c) Succesive multiplications: $a_n = (2 \cdot 1 + 3) (2 \cdot 2 + 3) (2 \cdot 3 + 3) \cdots (2n + 3) 4$.

(d) $a_n = a_{n-1} + n^3$, $n \ge 1$, $a_0 = 4$.

Ans: (d) Succesive additions: $a_n = 4 + 1^3 + 2^3 + 3^3 + \dots + n^3$. Or $a_n = 4 + \sum_{j=1}^n j^3$.

2. For the following second-order recurrence relation and initial conditions,

 $a_n - a_{n-1} - 2a_{n-2} = 0, \ n \ge 2,$ $a_0 = 2, \ a_1 = 7,$

- (a) Write out the characteristic equation. Ans: $r^2 r 2 = 0$.
- (b) Find the roots of the characteristic equation. Ans: r = -1 and r = 2.
- (c) Write the general solution of the recurrence relation. Ans: $a_n = C_1(-1)^n + C_2 2^n$
- (d) Find the solution that satisfies the initial conditions.
- Ans: The initial conditions become $C_1 + C_2 = 2$, and $-C_1 + 2C_2 = 7$, giving $C_1 = -1$ and $C_2 = 3$ so that $a_n = -1 \cdot (-1)^n + 3 \cdot 2^n$.