You do not have to simplify numerical answers, but you must present your final answer using only numbers and the operations of addition, subtraction, multiplication, division, powers and factorials.

All solutions must appear on this sheet, in the spaces provided below each problem.

1. The 12-character string "MAGNIFICENCE" contains ' N ' 2 times, ' I ' 2 times, ' C ' 2 times and ' E ' 2 times. The remaining 4 characters occur 1 time each.
(a) How many 12-character strings are arrangements of this string?

Ans: $N=\frac{12!}{2!2!2!2!}$
(b) How many of the strings in part (a) contain none of the substrings "NN", "II", "CC", "EE"?

Ans: Using conditions
$c_{1}=$ 'contains "NN",$c_{2}=$ 'contains "II"', $c_{3}=$ 'contains "CC"', $c_{4}=$ 'contains "EE"' we get

$$
\begin{aligned}
& S_{1}=4 N\left(c_{1}\right)=4 \frac{11!}{2!2!2!}, \quad S_{2}=6 N\left(c_{1} c_{2}\right)=6 \frac{10!}{2!2!}, \\
& S_{3}=4 N\left(c_{1} c_{2} c_{3}\right)=4 \frac{9!}{2!}, \quad S_{4}=N\left(c_{1} c_{2} c_{3} c_{4}\right)=8!
\end{aligned}
$$

So,

$$
N\left(\overline{c_{1}} \overline{c_{2}} \bar{c}_{3} \bar{c}_{4}\right)=N-S_{1}+S_{2}-S_{3}+S_{4}=\frac{12!}{2!2!2!2!}-4 \frac{11!}{2!2!2!}+6 \frac{10!}{2!2!}-4 \frac{9!}{2!}+8!.
$$

(c) How many of the strings in part (a) contain at least one of the four substrings in part (b)?

Ans: $S_{1}-S_{2}+S_{3}-S_{4}=4 \frac{11!}{2!2!2!}-6 \frac{10!}{2!2!}+4 \frac{9!}{2!}-8!$
(d) How many of the strings in part (a) contain exactly one of the four substrings in part (b)?

Ans: $S_{1}-2 S_{2}+3 S_{3}-4 S_{4}=4 \frac{11!}{2!2!2!}-2 \cdot 6 \frac{10!}{2!2!}+3 \cdot 4 \frac{9!}{2!}-4 \cdot 8!$

