Instructions: You need not simplify, but you must write your answer using only numbers and the operations of addition, subtraction, multiplication, division, power and factorial. That is, " $5!/ 2$!" is OK, but " $P(5,3)$ " is not finished.

1. A box labeled ' A ' contains 6 toys, and a box labeled ' B ' contains 13 toys. All the toys are different.
(a) Suppose a child is told to select one toy, to be chosen either from box A or from box B. How many possible outcomes are there?

Ans: There are 2 tasks: select from box A (6 possibilities), or select from box B (13 possibilities. Since the sets are disjoint there are $6+13=19$ possibilities.
(b) Suppose the instructions are to select two toys, one from box A and one from box B. How many possible outcomes are there?

Ans: These are the same 2 tasks, but both must be done. So, multiply the numbers $6 \cdot 13=78$.
2. The 13 -letter string "WASHINGTONIAN" has 3 occurrences of ' N ' and 2 occurrences each of the letters 'A' and ' I ', and no other repetitions.
(a) How many different 13 -letter strings are arrangements of this string?

Ans: $\frac{13!}{3!2!2!}$.
(b) How many arrangements of this string contain the three substrings "NNN", "AA" and "II"?

Ans: Permutations of the 9 objects, 'NNN', 'AA', 'II', 'W', ' S^{\prime}, ' H^{\prime}, ' G^{\prime}, ' T^{\prime}, and ' O^{\prime} : 9! arrangements.

