Math 3103 Combinatorics (Luecking)
NAME:
(Please print clearly)
Second Exam A (solutions)
October 27, 2023

1. For each of the following first-order recurrence relations, find the solution that satisfies the given initial condition.

$$
\text { (a) } \begin{aligned}
& a_{n}=3 a_{n-1}, \quad n \geq 1 \\
& a_{0} \\
&=10
\end{aligned}
$$

Ans: Geometric progression: $a_{n}=(10) 3^{n}$
(b) $a_{n}=a_{n-1}+4, \quad n \geq 1$, $a_{0}=7$.

Ans: Arithmetic progression: $a_{n}=7+4 n$
(c) $a_{n}=\left(n^{2}+4\right) a_{n-1}, \quad n \geq 1$,
$a_{0}=5$.
Ans: Successive multiplications: $a_{n}=5\left(1^{2}+4\right)\left(2^{2}+4\right) \cdots\left(n^{2}+4\right)$.
(d) $a_{n}=a_{n-1}+n^{3} 4^{n}, \quad n \geq 1$, $a_{0}=2$.

Ans: Successive additions: $a_{n}=2+\left(1^{3}\right) 4^{1}+\left(2^{3}\right) 4^{2}+\cdots+n^{3} 4^{n}$
2. For the following second-order recurrence relation, find (i) the characteristic equation and its roots, (ii) the general solution, and (iii) the solution that satisfies the initial conditions.

$$
\begin{aligned}
& a_{n}-6 a_{n-1}+9 a_{n-2}=0, \quad n \geq 2 \\
& a_{0}=1 \text { and } a_{1}=4,
\end{aligned}
$$

Ans: (i) $r^{2}-6 r+9=0$ has roots 3 and 3 (repeated root).
(ii) General solution: $C_{1} 3^{n}+C_{2} n 3^{n}$.
(iii) The ICs, $C_{1}=1$ and $3 C_{1}+3 C_{2}=4$, give $C_{1}=1$ and $C_{2}=1 / 3$. Thus:

$$
a_{n}=3^{n}+\frac{1}{3} n 3^{n}
$$

3. For the following second-order recurrence relation, find (i) the characteristic equation and its roots, (ii) the general solution, and (iii) the solution that satisfies the initial conditions.

$$
\begin{aligned}
& a_{n}-4 a_{n-1}+5 a_{n-2}=0, \quad n \geq 2, \\
& a_{0}=0 \text { and } a_{1}=4
\end{aligned}
$$

Ans: (i) $r^{2}-4 r+5=0$ has roots $r=2 \pm i$.
(ii) General solution: $C_{1}(2+i)^{n}+C_{2}(2-i)^{n}$.
(iii) The ICs, $C_{1}+C_{2}=0$ and $C_{1}(2+i)+C_{2}(2-i)=4$, give $C_{1}=-2 i$ and $C_{2}=2 i$.

Thus: $a_{n}=-2 i(2+i)^{n}+2 i(2-i)^{n}$.
Or use the form $\left.a_{n}=(\sqrt{5})^{n} 4 \sin (\theta n)\right)$, where $\theta=\cos ^{-1}\left(\frac{2}{\sqrt{5}}\right)$
4. For the following nonhomogeneous recurrence relation with initial conditions find (i) the homogeneous solution $a_{n}^{(h)}$, (ii) a particular solution $a_{n}^{(p)}$, and (iii) the solution that satisfies the initial conditions.

$$
\begin{aligned}
& a_{n}-4 a_{n-1}+3 a_{n-2}=(3) 2^{n}, \quad n \geq 2, \\
& a_{0}=0 \text { and } a_{1}=0 .
\end{aligned}
$$

Ans: (i) The homogeneous solution is $a_{n}^{(h)}=C_{1}+C_{2} 3^{n}$.
(ii) A particular solution exists in the form $a_{n}^{(p)}=A 2^{n}$ for some constant A. The recurrence relation gives $A-4 A / 2+3 A / 4=3$, so $A=-12$ and $a_{n}^{(p)}=-(12) 2^{n}$.
(iii) The general solution is therefore $C_{1}+C_{2} 3^{n}-(12) 2^{n}$. The ICs, $C_{1}+C_{2}-12=0$ and $C_{1}+3 C_{2}-24=0$, give $C_{1}=6$ and $C_{2}=6$. Thus:

$$
a_{n}=6+(6) 3^{n}-(12) 2^{n}
$$

5. In the ring \mathbb{Z}_{20} find the following. All answers must be explicit elements of \mathbb{Z}_{20}. You don't have to show any work.
(a) $3 \cdot 9 \cdot 4 \quad$ Ans: $\quad(27 \bmod 20) \cdot 4=7 \cdot 4=28 \bmod 20=8$.
(b) $4 \cdot(12+13) \quad$ Ans: $\quad 4 \cdot(25 \bmod 20)=4 \cdot 5=20 \bmod 20=0$.
(c) -6 Ans: $\quad-6=14$ (because $(14+6) \bmod 20=0)$.
(d) 7^{-1} (You may use trial and error.) Ans: $\quad 7^{-1}=3($ because $7 \cdot 3=21 \bmod 20=1)$.
(e) List all the proper zero divisors. Ans: 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18 (elements divisible by either 2 or 5)
6. Do the following for the given rings.
(a) The factorization of 1025 into primes is $1025=5^{2} \cdot 41$. Find (i) the number of units and (ii) the number of proper zero divisors in the ring \mathbb{Z}_{1025}. You do not have to simplify, but your final answer must have no fractions.
Ans: Units: $\phi(1025)=5^{2} \cdot 41\left(\frac{4}{5}\right)\left(\frac{40}{41}\right)=5 \cdot 4 \cdot 40=800$.
Proper zero divisors: $1025-800-1=224$
(b) In the ring \mathbb{Z}_{2025} find $(101)^{-1}$

Ans: The Euclidean algorithm gives:

$$
\left\{\begin{array} { r l }
{ 2 0 2 5 } & { = 2 0 (1 0 1) + 5 } \\
{ 1 0 1 } & { = 2 0 (5) + 1 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
n=20 k+r_{1} \\
k=20 r_{1}+r_{2}
\end{array}\right.\right.
$$

where $n=2025, k=101, r_{1}=5$, and $r_{2}=1$. Putting $r_{1}=n-20 k$ (from the top equation) into the bottom one gives
$k=20(n-20 k)+r_{2}=20 n-400 k+r_{2}$ and solving for $r_{2}: r_{2}=401 k-20 n$. If we put the values back in, this says $1=401 \cdot 101$ in the ring \mathbb{Z}_{2025}. Thus $(101)^{-1}=401$.

Math 3103 Combinatorics (Luecking)
NAME:
(Please print clearly)
Second Exam B (solutions)
October 27, 2023

1. For each of the following first-order recurrence relations, find the solution that satisfies the given initial condition.

$$
\text { (a) } \begin{aligned}
a_{n} & =4 a_{n-1}, \quad n \geq 1, \\
& a_{0}
\end{aligned}=11 .
$$

Ans: Geometric progression: $a_{n}=(11) 4^{n}$
(b) $a_{n}=a_{n-1}+5, \quad n \geq 1$, $a_{0}=8$.

Ans: Arithmetic progression: $a_{n}=8+5 n$
(c) $a_{n}=\left(n^{2}+5\right) a_{n-1}, \quad n \geq 1$,
$a_{0}=5$.
Ans: Successive multiplications: $a_{n}=5\left(1^{2}+5\right)\left(2^{2}+5\right) \cdots\left(n^{2}+5\right)$.
(d) $a_{n}=a_{n-1}+n^{3} 5^{n}, \quad n \geq 1$, $a_{0}=2$.

Ans: Successive additions: $a_{n}=2+\left(1^{3}\right) 5^{1}+\left(2^{3}\right) 5^{2}+\cdots+n^{3} 5^{n}$
2. For the following second-order recurrence relation, find (i) the characteristic equation and its roots, (ii) the general solution, and (iii) the solution that satisfies the initial conditions.

$$
\begin{aligned}
& a_{n}-6 a_{n-1}+9 a_{n-2}=0, \quad n \geq 2 \\
& a_{0}=1 \text { and } a_{1}=5, .
\end{aligned}
$$

Ans: (i) $r^{2}-6 r+9=0$ has roots 3 and 3 (repeated root).
(ii) General solution: $C_{1} 3^{n}+C_{2} n 3^{n}$.
(iii) The ICs, $C_{1}=1$ and $3 C_{1}+3 C_{2}=5$, give $C_{1}=1$ and $C_{2}=2 / 3$. Thus:

$$
a_{n}=3^{n}+\frac{2}{3} n 3^{n}
$$

3. For the following second-order recurrence relation, find (i) the characteristic equation and its roots, (ii) the general solution, and (iii) the solution that satisfies the initial conditions.

$$
\begin{aligned}
& a_{n}-2 a_{n-1}+10 a_{n-2}=0, \quad n \geq 2, \\
& a_{0}=0 \text { and } a_{1}=6 .
\end{aligned}
$$

Ans: (i) $r^{2}-2 r+10=0$ has roots $r=1 \pm 3 i$.
(ii) General solution: $C_{1}(1+3 i)^{n}+C_{2}(1-3 i)^{n}$.
(iii) The ICs, $C_{1}+C_{2}=0$ and $C_{1}(1+3 i)+C_{2}(1-3 i)=6$, give $C_{1}=-i$ and $C_{2}=i$. Thus: $a_{n}=-i(1+3 i)^{n}+i(1-3 i)^{n}$.
Or use the form $\left.a_{n}=(\sqrt{10})^{n} 2 \sin (\theta n)\right)$, where $\theta=\cos ^{-1}\left(\frac{1}{\sqrt{10}}\right)$
4. For the following nonhomogeneous recurrence relation with initial conditions find (i) the homogeneous solution $a_{n}^{(h)}$, (ii) a particular solution $a_{n}^{(p)}$, and (iii) the solution that satisfies the initial conditions.

$$
\begin{aligned}
& a_{n}-5 a_{n-1}+4 a_{n-2}=(3) 2^{n}, \quad n \geq 2, \\
& a_{0}=0 \text { and } a_{1}=0 .
\end{aligned}
$$

Ans: (i) The homogeneous solution is $a_{n}^{(h)}=C_{1}+C_{2} 4^{n}$.
(ii) A particular solution exists in the form $a_{n}^{(p)}=A 2^{n}$ for some constant A. The recurrence relation gives $A-5 A / 2+4 A / 4=3$, so $A=-6$ and $a_{n}^{(p)}=-(6) 2^{n}$.
(iii) The general solution is therefore $C_{1}+C_{2} 4^{n}-(6) 2^{n}$. The ICs, $C_{1}+C_{2}-6=0$ and $C_{1}+4 C_{2}-12=0$, give $C_{1}=4$ and $C_{2}=2$. Thus:

$$
a_{n}=4+(2) 4^{n}-(6) 2^{n}
$$

5. In the ring \mathbb{Z}_{21} find the following. All answers must be explicit elements of \mathbb{Z}_{21}. You don't have to show any work.
(a) $3 \cdot 9 \cdot 4 \quad$ Ans: $\quad(27 \bmod 21) \cdot 4=6 \cdot 4=24 \bmod 21=3$.
(b) $4 \cdot(12+13) \quad$ Ans: $4 \cdot(25 \bmod 21)=4 \cdot 4=16 \bmod 21=16$.
(c) -6 Ans: $\quad-6=15$ (because $(15+6) \bmod 21=0)$.
(d) 11^{-1} (You may use trial and error.) Ans: $\quad 11^{-1}=2$ (because $11 \cdot 2=$ $22 \bmod 21=1$).
(e) List all the proper zero divisors. Ans: 3, 6, 9, 12, 15, 18, 7, 14 (elements divisible by either 3 or 7)
6. Do the following for the given rings.
(a) The factorization of 1026 into primes is $1026=2 \cdot 3^{3} \cdot 19$. Find (i) the number of units and (ii) the number of proper zero divisors in the ring \mathbb{Z}_{1026}. You do not have to simplify, but your final answer must have no fractions.
Ans: Units: $\phi(1026)=2 \cdot 3^{3} \cdot 19\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\left(\frac{18}{19}\right)=3^{2} \cdot 2 \cdot 18=324$.
Proper zero divisors: $1026-324-1=701$
(b) In the ring \mathbb{Z}_{2011} find $(100)^{-1}$

Ans: The Euclidean algorithm gives:

$$
\left\{\begin{array} { r l }
{ 2 0 1 1 } & { = 2 0 (1 0 0) + 1 1 } \\
{ 1 0 0 } & { = 9 (1 1) + 1 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
n=20 k+r_{1} \\
k=9 r_{1}+r_{2}
\end{array}\right.\right.
$$

where $n=2011, k=100, r_{1}=11$, and $r_{2}=1$. Putting $r_{1}=n-20 k$ (from the top equation) into the bottom one gives
$k=9(n-20 k)+r_{2}=9 n-180 k+r_{2}$ and solving for $r_{2}: r_{2}=181 k-9 n$. If we put the values back in, this says $1=181 \cdot 100$ in the ring \mathbb{Z}_{2011}. Thus $(100)^{-1}=181$.

Math 3103 Combinatorics (Luecking)
NAME:
(Please print clearly)
Second Exam C (solutions)
October 27, 2023

1. For each of the following first-order recurrence relations, find the solution that satisfies the given initial condition.

$$
\text { (a) } \begin{aligned}
& a_{n}=5 a_{n-1}, \quad n \geq 1 \\
& a_{0} \\
&=12
\end{aligned}
$$

Ans: Geometric progression: $a_{n}=(12) 5^{n}$
(b) $a_{n}=a_{n-1}+6, \quad n \geq 1$, $a_{0}=9$.

Ans: Arithmetic progression: $a_{n}=9+6 n$
(c) $a_{n}=\left(n^{2}+6\right) a_{n-1}, \quad n \geq 1$,
$a_{0}=5$.
Ans: Successive multiplications: $a_{n}=5\left(1^{2}+6\right)\left(2^{2}+6\right) \cdots\left(n^{2}+6\right)$.
(d) $a_{n}=a_{n-1}+n^{3} 6^{n}, \quad n \geq 1$, $a_{0}=2$.

Ans: Successive additions: $a_{n}=2+\left(1^{3}\right) 6^{1}+\left(2^{3}\right) 6^{2}+\cdots+n^{3} 6^{n}$
2. For the following second-order recurrence relation, find (i) the characteristic equation and its roots, (ii) the general solution, and (iii) the solution that satisfies the initial conditions.

$$
\begin{aligned}
& a_{n}-6 a_{n-1}+9 a_{n-2}=0, \quad n \geq 2 \\
& a_{0}=1 \text { and } a_{1}=7, .
\end{aligned}
$$

Ans: (i) $r^{2}-6 r+9=0$ has roots 3 and 3 (repeated root).
(ii) General solution: $C_{1} 3^{n}+C_{2} n 3^{n}$.
(iii) The ICs, $C_{1}=1$ and $3 C_{1}+3 C_{2}=7$, give $C_{1}=1$ and $C_{2}=4 / 3$. Thus:

$$
a_{n}=3^{n}+\frac{4}{3} n 3^{n}
$$

3. For the following second-order recurrence relation, find (i) the characteristic equation and its roots, (ii) the general solution, and (iii) the solution that satisfies the initial conditions.

$$
\begin{aligned}
& a_{n}-4 a_{n-1}+5 a_{n-2}=0, \quad n \geq 2, \\
& a_{0}=0 \text { and } a_{1}=6 .
\end{aligned}
$$

Ans: (i) $r^{2}-4 r+5=0$ has roots $r=2 \pm i$.
(ii) General solution: $C_{1}(2+i)^{n}+C_{2}(2-i)^{n}$.
(iii) The ICs, $C_{1}+C_{2}=0$ and $C_{1}(2+i)+C_{2}(2-i)=6$, give $C_{1}=-3 i$ and $C_{2}=3 i$. Thus: $a_{n}=-3 i(2+i)^{n}+3 i(2-i)^{n}$.
Or use the form $\left.a_{n}=(\sqrt{5})^{n} 6 \sin (\theta n)\right)$, where $\theta=\cos ^{-1}\left(\frac{2}{\sqrt{5}}\right)$
4. For the following nonhomogeneous recurrence relation with initial conditions find (i) the homogeneous solution $a_{n}^{(h)}$, (ii) a particular solution $a_{n}^{(p)}$, and (iii) the solution that satisfies the initial conditions.

$$
\begin{aligned}
& a_{n}-6 a_{n-1}+5 a_{n-2}=(6) 2^{n}, \quad n \geq 2, \\
& a_{0}=0 \text { and } a_{1}=0 .
\end{aligned}
$$

Ans: (i) The homogeneous solution is $a_{n}^{(h)}=C_{1}+C_{2} 5^{n}$.
(ii) A particular solution exists in the form $a_{n}^{(p)}=A 2^{n}$ for some constant A. The recurrence relation gives $A-6 A / 2+5 A / 4=6$, so $A=-8$ and $a_{n}^{(p)}=-(8) 2^{n}$.
(iii) The general solution is therefore $C_{1}+C_{2} 5^{n}-(8) 2^{n}$. The ICs, $C_{1}+C_{2}-8=0$ and $C_{1}+5 C_{2}-16=0$, give $C_{1}=6$ and $C_{2}=2$. Thus:

$$
a_{n}=6+(2) 5^{n}-(8) 2^{n}
$$

5. In the ring \mathbb{Z}_{22} find the following. All answers must be explicit elements of \mathbb{Z}_{22}. You don't have to show any work.
(a) $3 \cdot 9 \cdot 4 \quad$ Ans: $\quad(27 \bmod 22) \cdot 4=5 \cdot 4=20 \bmod 22=20$.
(b) $4 \cdot(12+13) \quad$ Ans: $\quad 4 \cdot(25 \bmod 22)=4 \cdot 3=12 \bmod 22=12$.
(c) -6 Ans: $\quad-6=16$ (because $(16+6) \bmod 22=0)$.
(d) 15^{-1} (You may use trial and error.) Ans: $15^{-1}=3$ (because $15 \cdot 3=$ $45 \bmod 22=1$.
(e) List all the proper zero divisors. Ans: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 11 (elements divisible by either 2 or 11)
6. Do the following for the given rings.
(a) The factorization of 1028 into primes is $1028=2^{2} \cdot 257$. Find (i) the number of units and (ii) the number of proper zero divisors in the ring \mathbb{Z}_{1028}. You do not have to simplify, but your final answer must have no fractions.
Ans: Units: $\phi(1028)=2^{2} \cdot 257\left(\frac{1}{2}\right)\left(\frac{256}{257}\right)=2 \cdot 256=512$.
Proper zero divisors: $1028-512-1=515$
(b) In the ring \mathbb{Z}_{2030} find $(101)^{-1}$

Ans: The Euclidean algorithm gives:

$$
\left\{\begin{array} { r l }
{ 2 0 3 0 } & { = 2 0 (1 0 1) + 1 0 } \\
{ 1 0 1 } & { = 1 0 (1 0) + 1 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
n=20 k+r_{1} \\
k=10 r_{1}+r_{2}
\end{array}\right.\right.
$$

where $n=2030, k=101, r_{1}=10$, and $r_{2}=1$. Putting $r_{1}=n-20 k$ (from the top equation) into the bottom one gives
$k=10(n-20 k)+r_{2}=10 n-200 k+r_{2}$ and solving for $r_{2}: r_{2}=201 k-10 n$. If we put the values back in, this says $1=201 \cdot 101$ in the ring \mathbb{Z}_{2030}. Thus $(101)^{-1}=201$.

