Groups and Burnside's Theorem

Daniel H. Luecking
MASC

November 27, 2023

The cycle index polynomial

We've seen several examples where the cycle structure of the group of rigid motions of a figure allow us to determine the number of distinguishable colorings.

The cycle index polynomial

We've seen several examples where the cycle structure of the group of rigid motions of a figure allow us to determine the number of distinguishable colorings.

But so far we've only used the number of cycles in each permutation.

The cycle index polynomial

We've seen several examples where the cycle structure of the group of rigid motions of a figure allow us to determine the number of distinguishable colorings.

But so far we've only used the number of cycles in each permutation.
And we've only answered one question: How many distinguishable colorings are there?

The cycle index polynomial

We've seen several examples where the cycle structure of the group of rigid motions of a figure allow us to determine the number of distinguishable colorings.

But so far we've only used the number of cycles in each permutation.
And we've only answered one question: How many distinguishable colorings are there?

If we use more details of the cycles, we can answer questions such as: How many distinguishable colorings are there in which 2 vertices are blue.

The cycle index polynomial

We've seen several examples where the cycle structure of the group of rigid motions of a figure allow us to determine the number of distinguishable colorings.

But so far we've only used the number of cycles in each permutation.
And we've only answered one question: How many distinguishable colorings are there?

If we use more details of the cycles, we can answer questions such as: How many distinguishable colorings are there in which 2 vertices are blue.

For this we also need to keep track of the length of each cycle. We keep track of this with another sort of generating function.

Let's work on the group for the equilateral triangle. For each element of the group let's substitute the variable x_{1} for each 1 -cycle (cycle of length 1), x_{2} for each 2 -cycle (cycle of length 2), x_{3} for each 3 -cycle, etc.:

$$
\begin{array}{ccccccc}
G: & (1)(2)(3) & (123) & (132) & (1)(23) & (2)(13) & (3)(12) \\
& x_{1} x_{1} x_{1} & x_{3} & x_{3} & x_{1} x_{2} & x_{1} x_{2} & x_{1} x_{2}
\end{array}
$$

Let's work on the group for the equilateral triangle. For each element of the group let's substitute the variable x_{1} for each 1 -cycle (cycle of length 1), x_{2} for each 2 -cycle (cycle of length 2), x_{3} for each 3 -cycle, etc.:

$$
\begin{array}{ccccccc}
G: & (1)(2)(3) & (123) & (132) & (1)(23) & (2)(13) & (3)(12) \\
x_{1} x_{1} x_{1} & x_{3} & x_{3} & x_{1} x_{2} & x_{1} x_{2} & x_{1} x_{2}
\end{array}
$$

Then we add these all up, collect like terms and divide by the order of the group:

$$
P_{G}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{6}\left(x_{1}^{3}+2 x_{3}+3 x_{1} x_{2}\right)
$$

Let's work on the group for the equilateral triangle. For each element of the group let's substitute the variable x_{1} for each 1 -cycle (cycle of length 1), x_{2} for each 2 -cycle (cycle of length 2), x_{3} for each 3 -cycle, etc.:

$$
\begin{array}{ccccccc}
G: & (1)(2)(3) & (123) & (132) & (1)(23) & (2)(13) & (3)(12) \\
x_{1} x_{1} x_{1} & x_{3} & x_{3} & x_{1} x_{2} & x_{1} x_{2} & x_{1} x_{2}
\end{array}
$$

Then we add these all up, collect like terms and divide by the order of the group:

$$
P_{G}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{6}\left(x_{1}^{3}+2 x_{3}+3 x_{1} x_{2}\right)
$$

This is called the cycle index polynomial for the group G.

Let's work on the group for the equilateral triangle. For each element of the group let's substitute the variable x_{1} for each 1 -cycle (cycle of length 1), x_{2} for each 2 -cycle (cycle of length 2), x_{3} for each 3 -cycle, etc.:

$$
\begin{array}{ccccccc}
G: & (1)(2)(3) & (123) & (132) & (1)(23) & (2)(13) & (3)(12) \\
& x_{1} x_{1} x_{1} & x_{3} & x_{3} & x_{1} x_{2} & x_{1} x_{2} & x_{1} x_{2}
\end{array}
$$

Then we add these all up, collect like terms and divide by the order of the group:

$$
P_{G}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{6}\left(x_{1}^{3}+2 x_{3}+3 x_{1} x_{2}\right)
$$

This is called the cycle index polynomial for the group G.
On the next slide we do this for the rectangle's group.

$$
\begin{array}{ccccc}
G: & (1)(2)(3)(4) & (13)(24) & (12)(34) & (14)(23) \\
& x_{1} x_{1} x_{1} x_{1} & x_{2} x_{2} & x_{2} x_{2} & x_{2} x_{2}
\end{array}
$$

$$
\begin{array}{ccccc}
G: & (1)(2)(3)(4) & (13)(24) & (12)(34) & (14)(23) \\
& x_{1} x_{1} x_{1} x_{1} & x_{2} x_{2} & x_{2} x_{2} & x_{2} x_{2}
\end{array}
$$

For this group,

$$
P_{G}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{1}{4}\left(x_{1}^{4}+3 x_{2}^{2}\right)
$$

$$
\begin{array}{ccccc}
G: & (1)(2)(3)(4) & (13)(24) & (12)(34) & (14)(23) \\
& x_{1} x_{1} x_{1} x_{1} & x_{2} x_{2} & x_{2} x_{2} & x_{2} x_{2}
\end{array}
$$

For this group,

$$
P_{G}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{1}{4}\left(x_{1}^{4}+3 x_{2}^{2}\right)
$$

Here are the computations for the group of the square: $G=\{(1)(2)(3)(4)$, $(1234),(13)(24),(1432),(12)(34),(14)(23),(1)(24)(3),(2)(13)(4)\}$

$$
\begin{array}{ccccc}
G: & (1)(2)(3)(4) & (13)(24) & (12)(34) & (14)(23) \\
x_{1} x_{1} x_{1} x_{1} & x_{2} x_{2} & x_{2} x_{2} & x_{2} x_{2}
\end{array}
$$

For this group,

$$
P_{G}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{1}{4}\left(x_{1}^{4}+3 x_{2}^{2}\right)
$$

Here are the computations for the group of the square: $G=\{(1)(2)(3)(4)$, $(1234),(13)(24),(1432),(12)(34),(14)(23),(1)(24)(3),(2)(13)(4)\}$

$$
P_{G}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{1}{8}\left(x_{1}^{4}+3 x_{2}^{2}+2 x_{4}+2 x_{1}^{2} x_{2}\right)
$$

If we have the group, we don't need to know the figure:

If we have the group, we don't need to know the figure: here is the group of rigid motions of a figure with 5 vertices: $G=\{(1)(2)(3)(4)(5)$, $(12)(345),(1)(2)(354),(12)(3)(4)(5),(1)(2)(345),(12)(354)\}$

If we have the group, we don't need to know the figure: here is the group of rigid motions of a figure with 5 vertices: $G=\{(1)(2)(3)(4)(5)$, $(12)(345),(1)(2)(354),(12)(3)(4)(5),(1)(2)(345),(12)(354)\}$ Then

$$
P_{G}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\frac{1}{6}\left(x_{1}^{5}+2 x_{2} x_{3}+2 x_{1}^{2} x_{3}+x_{1}^{3} x_{2}\right)
$$

If we have the group, we don't need to know the figure: here is the group of rigid motions of a figure with 5 vertices: $G=\{(1)(2)(3)(4)(5)$, $(12)(345),(1)(2)(354),(12)(3)(4)(5),(1)(2)(345),(12)(354)\}$ Then

$$
P_{G}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\frac{1}{6}\left(x_{1}^{5}+2 x_{2} x_{3}+2 x_{1}^{2} x_{3}+x_{1}^{3} x_{2}\right)
$$

Once we have the cycle index polynomial we can get the answer to a number of combinatorial problems.

If we have the group, we don't need to know the figure: here is the group of rigid motions of a figure with 5 vertices: $G=\{(1)(2)(3)(4)(5)$, $(12)(345),(1)(2)(354),(12)(3)(4)(5),(1)(2)(345),(12)(354)\}$ Then

$$
P_{G}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\frac{1}{6}\left(x_{1}^{5}+2 x_{2} x_{3}+2 x_{1}^{2} x_{3}+x_{1}^{3} x_{2}\right)
$$

Once we have the cycle index polynomial we can get the answer to a number of combinatorial problems.

If there are k colors to choose from, the number of distinguishable colorings is $P_{G}(k, k, k, \ldots)$.

If we have the group, we don't need to know the figure: here is the group of rigid motions of a figure with 5 vertices: $G=\{(1)(2)(3)(4)(5)$, $(12)(345),(1)(2)(354),(12)(3)(4)(5),(1)(2)(345),(12)(354)\}$ Then

$$
P_{G}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\frac{1}{6}\left(x_{1}^{5}+2 x_{2} x_{3}+2 x_{1}^{2} x_{3}+x_{1}^{3} x_{2}\right)
$$

Once we have the cycle index polynomial we can get the answer to a number of combinatorial problems.

If there are k colors to choose from, the number of distinguishable colorings is $P_{G}(k, k, k, \ldots)$. That is, just substitute the number of colors for each variable.

If we have the group, we don't need to know the figure: here is the group of rigid motions of a figure with 5 vertices: $G=\{(1)(2)(3)(4)(5)$, $(12)(345),(1)(2)(354),(12)(3)(4)(5),(1)(2)(345),(12)(354)\}$ Then

$$
P_{G}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\frac{1}{6}\left(x_{1}^{5}+2 x_{2} x_{3}+2 x_{1}^{2} x_{3}+x_{1}^{3} x_{2}\right)
$$

Once we have the cycle index polynomial we can get the answer to a number of combinatorial problems.

If there are k colors to choose from, the number of distinguishable colorings is $P_{G}(k, k, k, \ldots)$. That is, just substitute the number of colors for each variable. For the rectangle with 2 colors we have $P_{G}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}^{4}+3 x_{2}^{2}\right) / 4$ so,

$$
P_{G}(2,2,2,2)=\frac{1}{4}\left(2^{4}+3 \cdot 2^{2}\right)=\frac{28}{4}=7 .
$$

If we have the group, we don't need to know the figure: here is the group of rigid motions of a figure with 5 vertices: $G=\{(1)(2)(3)(4)(5)$, $(12)(345),(1)(2)(354),(12)(3)(4)(5),(1)(2)(345),(12)(354)\}$ Then

$$
P_{G}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\frac{1}{6}\left(x_{1}^{5}+2 x_{2} x_{3}+2 x_{1}^{2} x_{3}+x_{1}^{3} x_{2}\right)
$$

Once we have the cycle index polynomial we can get the answer to a number of combinatorial problems.

If there are k colors to choose from, the number of distinguishable colorings is $P_{G}(k, k, k, \ldots)$. That is, just substitute the number of colors for each variable. For the rectangle with 2 colors we have $P_{G}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}^{4}+3 x_{2}^{2}\right) / 4$ so,

$$
P_{G}(2,2,2,2)=\frac{1}{4}\left(2^{4}+3 \cdot 2^{2}\right)=\frac{28}{4}=7 .
$$

as we already knew.

If that were all we could do with it, it wouldn't be much use because we already know how to get that.

If that were all we could do with it, it wouldn't be much use because we already know how to get that. But the following calculations give us more information: Let's say we have colors red and white to color the vertices of a figure.

If that were all we could do with it, it wouldn't be much use because we already know how to get that. But the following calculations give us more information: Let's say we have colors red and white to color the vertices of a figure. If we take P_{G} and substitute: $x_{1}=r+w, x_{2}=r^{2}+w^{2}$, $x_{3}=r^{3}+w^{3}$, etc., we get a bunch of terms that are all products of powers of r and w.

If that were all we could do with it, it wouldn't be much use because we already know how to get that. But the following calculations give us more information: Let's say we have colors red and white to color the vertices of a figure. If we take P_{G} and substitute: $x_{1}=r+w, x_{2}=r^{2}+w^{2}$, $x_{3}=r^{3}+w^{3}$, etc., we get a bunch of terms that are all products of powers of r and w. Here is what we get for the rectangle, where $P_{G}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}^{4}+3 x_{2}^{2}\right) / 4$:

$$
\begin{aligned}
P_{G}\left(r+w, r^{2}+w^{2}, r^{3}+w^{3}, r^{4}+w^{4}\right) & =\frac{1}{4}\left[(r+w)^{4}+3\left(r^{2}+w^{2}\right)^{2}\right] \\
& =r^{4}+r^{3} w+3 r^{2} w^{2}+r w^{3}+w^{4}
\end{aligned}
$$

If that were all we could do with it, it wouldn't be much use because we already know how to get that. But the following calculations give us more information: Let's say we have colors red and white to color the vertices of a figure. If we take P_{G} and substitute: $x_{1}=r+w, x_{2}=r^{2}+w^{2}$, $x_{3}=r^{3}+w^{3}$, etc., we get a bunch of terms that are all products of powers of r and w. Here is what we get for the rectangle, where $P_{G}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}^{4}+3 x_{2}^{2}\right) / 4$:

$$
\begin{aligned}
P_{G}\left(r+w, r^{2}+w^{2}, r^{3}+w^{3}, r^{4}+w^{4}\right) & =\frac{1}{4}\left[(r+w)^{4}+3\left(r^{2}+w^{2}\right)^{2}\right] \\
& =r^{4}+r^{3} w+3 r^{2} w^{2}+r w^{3}+w^{4}
\end{aligned}
$$

The number in front of each term tells us how many distinguishable colorings have that combination of colors: there is only one that uses 4 red, or 3 red and 1 white, or 3 white and 1 red, or 4 white.

If that were all we could do with it, it wouldn't be much use because we already know how to get that. But the following calculations give us more information: Let's say we have colors red and white to color the vertices of a figure. If we take P_{G} and substitute: $x_{1}=r+w, x_{2}=r^{2}+w^{2}$, $x_{3}=r^{3}+w^{3}$, etc., we get a bunch of terms that are all products of powers of r and w. Here is what we get for the rectangle, where $P_{G}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}^{4}+3 x_{2}^{2}\right) / 4$:

$$
\begin{aligned}
P_{G}\left(r+w, r^{2}+w^{2}, r^{3}+w^{3}, r^{4}+w^{4}\right) & =\frac{1}{4}\left[(r+w)^{4}+3\left(r^{2}+w^{2}\right)^{2}\right] \\
& =r^{4}+r^{3} w+3 r^{2} w^{2}+r w^{3}+w^{4}
\end{aligned}
$$

The number in front of each term tells us how many distinguishable colorings have that combination of colors: there is only one that uses 4 red, or 3 red and 1 white, or 3 white and 1 red, or 4 white. But there are 3 distinguishable colorings that use 2 red and 2 white.

Let's go over again the process for creating the cycle index polynomial for the group of rigid motions of a figure.

Let's go over again the process for creating the cycle index polynomial for the group of rigid motions of a figure. Lets work with another example, a square with one diagonal:

Let's go over again the process for creating the cycle index polynomial for the group of rigid motions of a figure. Lets work with another example, a square with one diagonal:

Its group consists of an identity (all vertices unmoved) which has disjoint cycle form (1)(2)(3)(4).

Let's go over again the process for creating the cycle index polynomial for the group of rigid motions of a figure. Lets work with another example, a square with one diagonal:

Its group consists of an identity (all vertices unmoved) which has disjoint cycle form (1)(2)(3)(4). It has 180° rotation symmetry (opposite vertices are exchanged): (13)(24).

Let's go over again the process for creating the cycle index polynomial for the group of rigid motions of a figure. Lets work with another example, a square with one diagonal:

Its group consists of an identity (all vertices unmoved) which has disjoint cycle form (1)(2)(3)(4). It has 180° rotation symmetry (opposite vertices are exchanged): (13)(24). The given diagonal is a line of symmetry, so we can reflect through it (vertices 2 and 4 only are exchanged): (1)(24)(3).

Let's go over again the process for creating the cycle index polynomial for the group of rigid motions of a figure. Lets work with another example, a square with one diagonal:

Its group consists of an identity (all vertices unmoved) which has disjoint cycle form (1)(2)(3)(4). It has 180° rotation symmetry (opposite vertices are exchanged): (13)(24). The given diagonal is a line of symmetry, so we can reflect through it (vertices 2 and 4 only are exchanged): (1)(24)(3). The other diagonal is also a line of symmetry (vertices 1 and 3 only are exchanged): (13)(2)(4).

Let's go over again the process for creating the cycle index polynomial for the group of rigid motions of a figure. Lets work with another example, a square with one diagonal:

Its group consists of an identity (all vertices unmoved) which has disjoint cycle form (1)(2)(3)(4). It has 180° rotation symmetry (opposite vertices are exchanged): (13)(24). The given diagonal is a line of symmetry, so we can reflect through it (vertices 2 and 4 only are exchanged): (1)(24)(3). The other diagonal is also a line of symmetry (vertices 1 and 3 only are exchanged): (13)(2)(4). The complete group is

$$
G=\{(1)(2)(3)(4),(13)(24),(1)(24)(3),(13)(2)(4)\}
$$

For each element of the group we write it cycle structure representation:

For each element of the group we write it cycle structure representation: Group element cycle structure representation

$(1)(2)(3)(4)$	$x_{1} x_{1} x_{1} x_{1}$	$=x_{1}^{4}$
$(13)(24)$	$x_{2} x_{2}$	$=x_{2}^{2}$
$(1)(24)(3)$	$x_{1} x_{2} x_{1}$	$=x_{1}^{2} x_{2}$
$(13)(2)(4)$	$x_{2} x_{1} x_{1}$	$=x_{1}^{2} x_{2}$

For each element of the group we write it cycle structure representation: Group element cycle structure representation

$(1)(2)(3)(4)$	$x_{1} x_{1} x_{1} x_{1}$	$=x_{1}^{4}$
$(13)(24)$	$x_{2} x_{2}$	$=x_{2}^{2}$
$(1)(24)(3)$	$x_{1} x_{2} x_{1}$	$=x_{1}^{2} x_{2}$
$(13)(2)(4)$	$x_{2} x_{1} x_{1}$	$=x_{1}^{2} x_{2}$

Adding these and dividing by the size of the group gives us P_{G} :

$$
P_{G}\left(x_{1}, x_{2}\right)=\frac{1}{4}\left(x_{1}^{4}+x_{2}^{2}+2 x_{1}^{2} x_{2}\right)
$$

For each element of the group we write it cycle structure representation: Group element cycle structure representation

$(1)(2)(3)(4)$	$x_{1} x_{1} x_{1} x_{1}$	$=x_{1}^{4}$
$(13)(24)$	$x_{2} x_{2}$	$=x_{2}^{2}$
$(1)(24)(3)$	$x_{1} x_{2} x_{1}$	$=x_{1}^{2} x_{2}$
$(13)(2)(4)$	$x_{2} x_{1} x_{1}$	$=x_{1}^{2} x_{2}$

Adding these and dividing by the size of the group gives us P_{G} :

$$
P_{G}\left(x_{1}, x_{2}\right)=\frac{1}{4}\left(x_{1}^{4}+x_{2}^{2}+2 x_{1}^{2} x_{2}\right)
$$

We can get the number of distinguishable colorings by substituting the number of colors for each variable.

For each element of the group we write it cycle structure representation: Group element cycle structure representation

$(1)(2)(3)(4)$	$x_{1} x_{1} x_{1} x_{1}$	$=x_{1}^{4}$
$(13)(24)$	$x_{2} x_{2}$	$=x_{2}^{2}$
$(1)(24)(3)$	$x_{1} x_{2} x_{1}$	$=x_{1}^{2} x_{2}$
$(13)(2)(4)$	$x_{2} x_{1} x_{1}$	$=x_{1}^{2} x_{2}$

Adding these and dividing by the size of the group gives us P_{G} :

$$
P_{G}\left(x_{1}, x_{2}\right)=\frac{1}{4}\left(x_{1}^{4}+x_{2}^{2}+2 x_{1}^{2} x_{2}\right)
$$

We can get the number of distinguishable colorings by substituting the number of colors for each variable. Since there is one variable in each term for each cycle in the group element, replacing each variable by the number of colors will give the same formula as before: number of colors raised to the number of cycles

Thus $P_{G}(2,2)=\left(2^{4}+2^{2}+2\left(2^{3}\right)\right) / 4=9$ is the number of distinguishable colorings when there are 2 colors.

Thus $P_{G}(2,2)=\left(2^{4}+2^{2}+2\left(2^{3}\right)\right) / 4=9$ is the number of distinguishable colorings when there are 2 colors. And $P_{G}(3,3)=\left(3^{4}+3^{2}+2\left(3^{3}\right)\right) / 4=36$ is the number of distinguishable colorings when there are 3 colors.

Thus $P_{G}(2,2)=\left(2^{4}+2^{2}+2\left(2^{3}\right)\right) / 4=9$ is the number of distinguishable colorings when there are 2 colors. And $P_{G}(3,3)=\left(3^{4}+3^{2}+2\left(3^{3}\right)\right) / 4=36$ is the number of distinguishable colorings when there are 3 colors.

If the 2 colors are red and white and we make the following substitutions:

Thus $P_{G}(2,2)=\left(2^{4}+2^{2}+2\left(2^{3}\right)\right) / 4=9$ is the number of distinguishable colorings when there are 2 colors. And $P_{G}(3,3)=\left(3^{4}+3^{2}+2\left(3^{3}\right)\right) / 4=36$ is the number of distinguishable colorings when there are 3 colors.

If the 2 colors are red and white and we make the following substitutions:

- $x_{1}=r+w$.

Thus $P_{G}(2,2)=\left(2^{4}+2^{2}+2\left(2^{3}\right)\right) / 4=9$ is the number of distinguishable colorings when there are 2 colors. And $P_{G}(3,3)=\left(3^{4}+3^{2}+2\left(3^{3}\right)\right) / 4=36$ is the number of distinguishable colorings when there are 3 colors.

If the 2 colors are red and white and we make the following substitutions:

- $x_{1}=r+w$.
- $x_{2}=r^{2}+w^{2}$.

Thus $P_{G}(2,2)=\left(2^{4}+2^{2}+2\left(2^{3}\right)\right) / 4=9$ is the number of distinguishable colorings when there are 2 colors. And $P_{G}(3,3)=\left(3^{4}+3^{2}+2\left(3^{3}\right)\right) / 4=36$ is the number of distinguishable colorings when there are 3 colors.

If the 2 colors are red and white and we make the following substitutions:

- $x_{1}=r+w$.
- $x_{2}=r^{2}+w^{2}$.
- $x_{3}=r^{3}+w^{3}$, etc.
we get an expression from which we can draw several conclusions.

Thus $P_{G}(2,2)=\left(2^{4}+2^{2}+2\left(2^{3}\right)\right) / 4=9$ is the number of distinguishable colorings when there are 2 colors. And $P_{G}(3,3)=\left(3^{4}+3^{2}+2\left(3^{3}\right)\right) / 4=36$ is the number of distinguishable colorings when there are 3 colors.

If the 2 colors are red and white and we make the following substitutions:

- $x_{1}=r+w$.
- $x_{2}=r^{2}+w^{2}$.
- $x_{3}=r^{3}+w^{3}$, etc.
we get an expression from which we can draw several conclusions.
For our current example:

$$
\begin{aligned}
P_{G}\left(r+w, r^{2}+w^{2}\right) & =\frac{(r+w)^{4}+\left(r^{2}+w^{2}\right)^{2}+2(r+w)^{2}\left(r^{2}+w^{2}\right)}{4} \\
& =r^{4}+2 r^{3} w+3 r^{2} w^{2}+2 r w^{3}+w^{4}
\end{aligned}
$$

The term $3 r^{2} w^{2}$ tells us there are 3 distinguishable colorings in which 2 vertices are red and 2 are white.

The term $3 r^{2} w^{2}$ tells us there are 3 distinguishable colorings in which 2 vertices are red and 2 are white. And the term $2 r w^{3}$ says there are 2 distinguishable colorings with 1 red and 3 white vertices.

The term $3 r^{2} w^{2}$ tells us there are 3 distinguishable colorings in which 2 vertices are red and 2 are white. And the term $2 r w^{3}$ says there are 2 distinguishable colorings with 1 red and 3 white vertices. It is difficult to explain why this works. I refer you to the textbook if you are sufficiently curious.

The term $3 r^{2} w^{2}$ tells us there are 3 distinguishable colorings in which 2 vertices are red and 2 are white. And the term $2 r w^{3}$ says there are 2 distinguishable colorings with 1 red and 3 white vertices. It is difficult to explain why this works. I refer you to the textbook if you are sufficiently curious.

Here are the three that use 2 red and 2 white

The term $3 r^{2} w^{2}$ tells us there are 3 distinguishable colorings in which 2 vertices are red and 2 are white. And the term $2 r w^{3}$ says there are 2 distinguishable colorings with 1 red and 3 white vertices. It is difficult to explain why this works. I refer you to the textbook if you are sufficiently curious.

Here are the three that use 2 red and 2 white

If there are three colors such as red, white and blue, we would substitute $x_{1}=r+w+b, x_{2}=r^{2}+w^{2}+b^{2}$, etc.

The term $3 r^{2} w^{2}$ tells us there are 3 distinguishable colorings in which 2 vertices are red and 2 are white. And the term $2 r w^{3}$ says there are 2 distinguishable colorings with 1 red and 3 white vertices. It is difficult to explain why this works. I refer you to the textbook if you are sufficiently curious.

Here are the three that use 2 red and 2 white

If there are three colors such as red, white and blue, we would substitute $x_{1}=r+w+b, x_{2}=r^{2}+w^{2}+b^{2}$, etc. The calculations become considerably more lengthy and this substitution for our small group is already seriously long.

The term $3 r^{2} w^{2}$ tells us there are 3 distinguishable colorings in which 2 vertices are red and 2 are white. And the term $2 r w^{3}$ says there are 2 distinguishable colorings with 1 red and 3 white vertices. It is difficult to explain why this works. I refer you to the textbook if you are sufficiently curious.

Here are the three that use 2 red and 2 white

If there are three colors such as red, white and blue, we would substitute $x_{1}=r+w+b, x_{2}=r^{2}+w^{2}+b^{2}$, etc. The calculations become considerably more lengthy and this substitution for our small group is already seriously long. However, symbolic math software (such as Mathematica ${ }^{\circledR}$ or Maple ${ }^{\circledR}$) can do it rapidly.

Without showing any details, for our current group:

$$
\begin{aligned}
& P_{G}\left(r+b+w, r^{2}+b^{2}+w^{2}\right)=r^{4}+w^{4}+b^{4}+2 r^{3} w+2 r^{3} b+2 w^{3} r+2 w^{3} b \\
& \quad+2 b^{3} r+2 b^{3} w+3 r^{2} w^{2}+3 r^{2} b^{2}+3 w^{2} b^{2}+4 r w b^{2}+4 r b w^{2}+4 w b r^{2}
\end{aligned}
$$

Without showing any details, for our current group:

$$
\begin{aligned}
& P_{G}\left(r+b+w, r^{2}+b^{2}+w^{2}\right)=r^{4}+w^{4}+b^{4}+2 r^{3} w+2 r^{3} b+2 w^{3} r+2 w^{3} b \\
& \quad+2 b^{3} r+2 b^{3} w+3 r^{2} w^{2}+3 r^{2} b^{2}+3 w^{2} b^{2}+4 r w b^{2}+4 r b w^{2}+4 w b r^{2}
\end{aligned}
$$

(I did this by hand... I don't recommend doing that.)

Without showing any details, for our current group:

$$
\begin{aligned}
& P_{G}\left(r+b+w, r^{2}+b^{2}+w^{2}\right)=r^{4}+w^{4}+b^{4}+2 r^{3} w+2 r^{3} b+2 w^{3} r+2 w^{3} b \\
& \quad+2 b^{3} r+2 b^{3} w+3 r^{2} w^{2}+3 r^{2} b^{2}+3 w^{2} b^{2}+4 r w b^{2}+4 r b w^{2}+4 w b r^{2}
\end{aligned}
$$

(I did this by hand... I don't recommend doing that.) We can see from the last term (for example) there are 4 distinguishable ways to color the vertices where 2 are red, one white and one blue.

Without showing any details, for our current group:

$$
\begin{aligned}
& P_{G}\left(r+b+w, r^{2}+b^{2}+w^{2}\right)=r^{4}+w^{4}+b^{4}+2 r^{3} w+2 r^{3} b+2 w^{3} r+2 w^{3} b \\
& \quad+2 b^{3} r+2 b^{3} w+3 r^{2} w^{2}+3 r^{2} b^{2}+3 w^{2} b^{2}+4 r w b^{2}+4 r b w^{2}+4 w b r^{2}
\end{aligned}
$$

(I did this by hand... I don't recommend doing that.) We can see from the last term (for example) there are 4 distinguishable ways to color the vertices where 2 are red, one white and one blue. Here they are:

