Groups and Burnside's Theorem

Daniel H. Luecking
MASC

November 17, 2023

More examples of groups of rigid motions

A regular hexagon with two added lines

More examples of groups of rigid motions

A regular hexagon with two added lines
The rigid motions of this figure must keep both the hexagon and the lines unchanged.

More examples of groups of rigid motions

A regular hexagon with two added lines
The rigid motions of this figure must keep both the hexagon and the lines unchanged. If we examine the 12 rigid motions of the hexagon, only the following 4 preserve the lines:
The identity: (1)(2)(3)(4)(5)(6).

More examples of groups of rigid motions

A regular hexagon with two added lines
The rigid motions of this figure must keep both the hexagon and the lines unchanged. If we examine the 12 rigid motions of the hexagon, only the following 4 preserve the lines:
The identity: $(1)(2)(3)(4)(5)(6)$. Rotate $180^{\circ}:(14)(25)(36)$.

More examples of groups of rigid motions

A regular hexagon with two added lines
The rigid motions of this figure must keep both the hexagon and the lines unchanged. If we examine the 12 rigid motions of the hexagon, only the following 4 preserve the lines:
The identity: (1)(2)(3)(4)(5)(6). Rotate $180^{\circ}:(14)(25)(36)$.
Left-to-right reflection: (1)(26)(35)(4).

More examples of groups of rigid motions

A regular hexagon with two added lines
The rigid motions of this figure must keep both the hexagon and the lines unchanged. If we examine the 12 rigid motions of the hexagon, only the following 4 preserve the lines:
The identity: $(1)(2)(3)(4)(5)(6)$. Rotate $180^{\circ}:(14)(25)(36)$.
Left-to-right reflection: (1)(26)(35)(4). Top-to-bottom reflection: (14)(23)(56).

A parallelogram:

A parallelogram:

Just two rigid motions, the identity: (1)(2)(3)(4) and 180° rotation: (13)(24).

A parallelogram:

Just two rigid motions, the identity: (1)(2)(3)(4) and 180° rotation: (13)(24).

Not the same parallelogram:

But the same rigid motions: $(1)(2)(3)(4)$ and (13)(24).

Here's a brief explanation of Burnside's Theorem for the group of rigid motions of an equilateral triangle.

$\mathscr{C} \backslash G$	$(1)(2)(3)$	(123)	(132)	$(1)(23)$	$(2)(13)$	$(3)(12)$		
WWW	1	1	1	1	1	1	6	6
RWW	1	0	0	1	0	0	2	
WRW	1	0	0	0	1	0	2	
WWR	1	0	0	0	0	1	2	6
WRR	1	0	0	1	0	0	2	
RWR	1	0	0	0	1	0	2	
RRW	1	0	0	0	0	1	2	6
RRR	1	1	1	1	1	1	6	6
	8	2	2	4	4	4		24

One doesn't have to work out the table on the previous page to apply Burnside's Theorem.

One doesn't have to work out the table on the previous page to apply Burnside's Theorem. Just observe that a permutation like $g=(1)(23)$ leaves a coloring configuration unchanged only if the vertices in a single cycle are the same color.

One doesn't have to work out the table on the previous page to apply Burnside's Theorem. Just observe that a permutation like $g=(1)(23)$ leaves a coloring configuration unchanged only if the vertices in a single cycle are the same color.

To determine the number $\psi\left(g^{*}\right)$ for $g=(1)(23)$, just determine how many ways one can pick a color to paint vertex 1 and then pick a color to paint vertices 2 and 3 .

One doesn't have to work out the table on the previous page to apply Burnside's Theorem. Just observe that a permutation like $g=(1)(23)$ leaves a coloring configuration unchanged only if the vertices in a single cycle are the same color.

To determine the number $\psi\left(g^{*}\right)$ for $g=(1)(23)$, just determine how many ways one can pick a color to paint vertex 1 and then pick a color to paint vertices 2 and 3 . With 2 colors to pick from, the rule of product gives us 2 times 2 or 4 .

One doesn't have to work out the table on the previous page to apply Burnside's Theorem. Just observe that a permutation like $g=(1)(23)$ leaves a coloring configuration unchanged only if the vertices in a single cycle are the same color.

To determine the number $\psi\left(g^{*}\right)$ for $g=(1)(23)$, just determine how many ways one can pick a color to paint vertex 1 and then pick a color to paint vertices 2 and 3 . With 2 colors to pick from, the rule of product gives us 2 times 2 or 4 .

So, for our equilateral triangle we have the following table, where all we have to do is take the number of colors to the power of the number of cycles.

One doesn't have to work out the table on the previous page to apply Burnside's Theorem. Just observe that a permutation like $g=(1)(23)$ leaves a coloring configuration unchanged only if the vertices in a single cycle are the same color.

To determine the number $\psi\left(g^{*}\right)$ for $g=(1)(23)$, just determine how many ways one can pick a color to paint vertex 1 and then pick a color to paint vertices 2 and 3 . With 2 colors to pick from, the rule of product gives us 2 times 2 or 4 .

So, for our equilateral triangle we have the following table, where all we have to do is take the number of colors to the power of the number of cycles.
(1) (2)(3)
2^{3}
(1)(23)
(2)(13)
(3)(12)
2^{2}
2^{2}
2^{2}

I've previously mentioned: for 2 colors there are 6 distinguishable colorings of the vertices of square and 7 for the vertices of a rectangle.

I've previously mentioned: for 2 colors there are 6 distinguishable colorings of the vertices of square and 7 for the vertices of a rectangle.
The group of rigid motions of the square is
$\{(1)(2)(3)(4),(1234),(13)(24),(1432),(12)(34),(14)(23),(1)(24)(3),(13)(2)(4)\}$

I've previously mentioned: for 2 colors there are 6 distinguishable colorings of the vertices of square and 7 for the vertices of a rectangle.

The group of rigid motions of the square is
$\{(1)(2)(3)(4),(1234),(13)(24),(1432),(12)(34),(14)(23),(1)(24)(3),(13)(2)(4)\}$
With 2 colors, the number of distinguishable colorings is

$$
\frac{1}{8}\left(2^{4}+2^{1}+2^{2}+2^{1}+2^{2}+2^{2}+2^{3}+2^{3}\right)=\frac{48}{8}=6
$$

I've previously mentioned: for 2 colors there are 6 distinguishable colorings of the vertices of square and 7 for the vertices of a rectangle.
The group of rigid motions of the square is
$\{(1)(2)(3)(4),(1234),(13)(24),(1432),(12)(34),(14)(23),(1)(24)(3),(13)(2)(4)\}$
With 2 colors, the number of distinguishable colorings is

$$
\frac{1}{8}\left(2^{4}+2^{1}+2^{2}+2^{1}+2^{2}+2^{2}+2^{3}+2^{3}\right)=\frac{48}{8}=6
$$

The group of rigid motions of the rectangle is

$$
G=\{(1)(2)(3)(4),(13)(24),(12)(34),(14)(23)\}
$$

I've previously mentioned: for 2 colors there are 6 distinguishable colorings of the vertices of square and 7 for the vertices of a rectangle.
The group of rigid motions of the square is
$\{(1)(2)(3)(4),(1234),(13)(24),(1432),(12)(34),(14)(23),(1)(24)(3),(13)(2)(4)\}$
With 2 colors, the number of distinguishable colorings is

$$
\frac{1}{8}\left(2^{4}+2^{1}+2^{2}+2^{1}+2^{2}+2^{2}+2^{3}+2^{3}\right)=\frac{48}{8}=6
$$

The group of rigid motions of the rectangle is

$$
G=\{(1)(2)(3)(4),(13)(24),(12)(34),(14)(23)\}
$$

With 2 colors, the number of distinguishable colorings is

$$
\frac{1}{4}\left(2^{4}+2^{2}+2^{2}+2^{2}\right)=\frac{28}{4}=7
$$

If we change the number of colors the formula is just as easy. Say there are 3 colors.

If we change the number of colors the formula is just as easy. Say there are 3 colors.

For the square, the number of distinguishable colorings is

$$
\frac{1}{8}\left(3^{4}+3^{1}+3^{2}+3^{1}+3^{2}+3^{2}+3^{3}+3^{3}\right)=\frac{168}{8}=21
$$

If we change the number of colors the formula is just as easy. Say there are 3 colors.

For the square, the number of distinguishable colorings is

$$
\frac{1}{8}\left(3^{4}+3^{1}+3^{2}+3^{1}+3^{2}+3^{2}+3^{3}+3^{3}\right)=\frac{168}{8}=21 .
$$

For the rectangle, the number of distinguishable colorings is

$$
\frac{1}{4}\left(3^{4}+3^{2}+3^{2}+3^{2}\right)=\frac{108}{4}=27 .
$$

If we change the number of colors the formula is just as easy. Say there are 3 colors.

For the square, the number of distinguishable colorings is

$$
\frac{1}{8}\left(3^{4}+3^{1}+3^{2}+3^{1}+3^{2}+3^{2}+3^{3}+3^{3}\right)=\frac{168}{8}=21 .
$$

For the rectangle, the number of distinguishable colorings is

$$
\frac{1}{4}\left(3^{4}+3^{2}+3^{2}+3^{2}\right)=\frac{108}{4}=27 .
$$

For the equilateral triangle, with three colors, the number of distinguishable colorings is

$$
\frac{1}{6}\left(3^{3}+3^{1}+3^{1}+3^{2}+3^{2}+3^{2}\right)=\frac{60}{6}=10
$$

The number of distinguishable colorings of a square, with only rotations allowed:

The number of distinguishable colorings of a square, with only rotations allowed: $G=\{(1)(2)(3)(4),(1234),(13)(24),(1432)\}$

The number of distinguishable colorings of a square, with only rotations allowed: $G=\{(1)(2)(3)(4),(1234),(13)(24),(1432)\}$

$$
\begin{array}{ll}
2 \text { colors: } & \frac{1}{4}\left(2^{4}+2^{1}+2^{2}+2^{1}\right)=6 \\
3 \text { colors: } & \frac{1}{4}\left(3^{4}+3^{1}+3^{2}+3^{1}\right)=24
\end{array}
$$

The number of distinguishable colorings of a square, with only rotations allowed: $G=\{(1)(2)(3)(4),(1234),(13)(24),(1432)\}$

$$
\begin{array}{ll}
2 \text { colors: } & \frac{1}{4}\left(2^{4}+2^{1}+2^{2}+2^{1}\right)=6 \\
3 \text { colors: } & \frac{1}{4}\left(3^{4}+3^{1}+3^{2}+3^{1}\right)=24
\end{array}
$$

A square with two symmetrical lines added.

The number of distinguishable colorings of a square, with only rotations allowed: $G=\{(1)(2)(3)(4),(1234),(13)(24),(1432)\}$

$$
\begin{array}{ll}
2 \text { colors: } & \frac{1}{4}\left(2^{4}+2^{1}+2^{2}+2^{1}\right)=6 \\
3 \text { colors: } & \frac{1}{4}\left(3^{4}+3^{1}+3^{2}+3^{1}\right)=24
\end{array}
$$

A square with two symmetrical lines added.
The group of the above figure is $\{(1)(2)(3)(4)(5)(6),(15)(24)(36),(15)(24)(3)(6),(1)(2)(36)(4)(5)\}$.

The number of distinguishable colorings of a square, with only rotations allowed: $G=\{(1)(2)(3)(4),(1234),(13)(24),(1432)\}$

$$
\begin{array}{ll}
2 \text { colors: } & \frac{1}{4}\left(2^{4}+2^{1}+2^{2}+2^{1}\right)=6 \\
3 \text { colors: } & \frac{1}{4}\left(3^{4}+3^{1}+3^{2}+3^{1}\right)=24
\end{array}
$$

A square with two symmetrical lines added.
The group of the above figure is $\{(1)(2)(3)(4)(5)(6),(15)(24)(36),(15)(24)(3)(6),(1)(2)(36)(4)(5)\}$. The number of distinguishable colorings with 5 colors:

$$
\frac{1}{4}\left(5^{6}+5^{3}+5^{4}+5^{5}\right)=4875
$$

The parallelogram from earlier: $G=\{(1)(2)(3)(4),(13)(24)\}$

The parallelogram from earlier: $G=\{(1)(2)(3)(4),(13)(24)\}$ and the number of distinguishable colorings is

$$
\begin{array}{ll}
2 \text { colors: } & \frac{1}{2}\left(2^{4}+2^{2}\right)=10 \\
3 \text { colors: } & \frac{1}{2}\left(3^{4}+3^{2}\right)=45 \\
4 \text { colors: } & \frac{1}{2}\left(4^{4}+4^{2}\right)=136
\end{array}
$$

The parallelogram from earlier: $G=\{(1)(2)(3)(4),(13)(24)\}$ and the number of distinguishable colorings is

$$
\begin{array}{ll}
2 \text { colors: } & \frac{1}{2}\left(2^{4}+2^{2}\right)=10 \\
3 \text { colors: } & \frac{1}{2}\left(3^{4}+3^{2}\right)=45 \\
4 \text { colors: } & \frac{1}{2}\left(4^{4}+4^{2}\right)=136
\end{array}
$$

One last example: the regular pentagon, whose group is

$$
\begin{aligned}
& \{(1)(2)(3)(4)(5),(12345),(13524),(14253),(15432),(1)(25)(34), \\
& \quad(2)(13)(54),(3)(24)(15),(4)(35)(12),(5)(14)(23)\} .
\end{aligned}
$$

The parallelogram from earlier: $G=\{(1)(2)(3)(4),(13)(24)\}$ and the number of distinguishable colorings is

$$
\begin{array}{ll}
2 \text { colors: } & \frac{1}{2}\left(2^{4}+2^{2}\right)=10 \\
3 \text { colors: } & \frac{1}{2}\left(3^{4}+3^{2}\right)=45 \\
4 \text { colors: } & \frac{1}{2}\left(4^{4}+4^{2}\right)=136
\end{array}
$$

One last example: the regular pentagon, whose group is

$$
\begin{aligned}
& \{(1)(2)(3)(4)(5),(12345),(13524),(14253),(15432),(1)(25)(34), \\
& \quad(2)(13)(54),(3)(24)(15),(4)(35)(12),(5)(14)(23)\}
\end{aligned}
$$

For 2 colors, the number of distinguishable colorings is

$$
\frac{1}{10}\left(2^{5}+4 \cdot 2^{1}+5 \cdot 2^{3}\right)=\frac{80}{10}=8
$$

The parallelogram from earlier: $G=\{(1)(2)(3)(4),(13)(24)\}$ and the number of distinguishable colorings is

$$
\begin{array}{ll}
2 \text { colors: } & \frac{1}{2}\left(2^{4}+2^{2}\right)=10 \\
3 \text { colors: } & \frac{1}{2}\left(3^{4}+3^{2}\right)=45 \\
4 \text { colors: } & \frac{1}{2}\left(4^{4}+4^{2}\right)=136
\end{array}
$$

One last example: the regular pentagon, whose group is

$$
\begin{gathered}
\{(1)(2)(3)(4)(5),(12345),(13524),(14253),(15432),(1)(25)(34) \\
(2)(13)(54),(3)(24)(15),(4)(35)(12),(5)(14)(23)\}
\end{gathered}
$$

For 2 colors, the number of distinguishable colorings is

$$
\frac{1}{10}\left(2^{5}+4 \cdot 2^{1}+5 \cdot 2^{3}\right)=\frac{80}{10}=8
$$

Exercise: for 2 colors, compute the number of distinguishable colorings of the vertices of a regular hexagon.

