
Code Generation

Daniel H. Luecking
MASC

November 10, 2023

1 / 15

Producing a group code

One way to look at the set of messages Zm
2 is to think of it as being all

possible sums of certain basic strings.

For a small example, you can take
Z3
2 and get the 7 nonzero strings by summing combinations of the 3

strings (100), (010), (001). We get (000) if we add any of these to itself.
If we perform an encoding by appending bits, we can ensure we get a
group by appending bits to just these 3 and then taking all possible sums
of the results. For example if I append as follows:

(100) → (100 101) (010) → (010 110) (001) → (001 011)

I get the example C we introduced last lecture. For example

(110 011) = (100 101) + (010 110) and

(111 000) = (100 101) + (010 110) + (001 011).

2 / 15

Producing a group code

One way to look at the set of messages Zm
2 is to think of it as being all

possible sums of certain basic strings. For a small example, you can take
Z3
2 and get the 7 nonzero strings by summing combinations of the 3

strings (100), (010), (001).

We get (000) if we add any of these to itself.
If we perform an encoding by appending bits, we can ensure we get a
group by appending bits to just these 3 and then taking all possible sums
of the results. For example if I append as follows:

(100) → (100 101) (010) → (010 110) (001) → (001 011)

I get the example C we introduced last lecture. For example

(110 011) = (100 101) + (010 110) and

(111 000) = (100 101) + (010 110) + (001 011).

2 / 15

Producing a group code

One way to look at the set of messages Zm
2 is to think of it as being all

possible sums of certain basic strings. For a small example, you can take
Z3
2 and get the 7 nonzero strings by summing combinations of the 3

strings (100), (010), (001). We get (000) if we add any of these to itself.

If we perform an encoding by appending bits, we can ensure we get a
group by appending bits to just these 3 and then taking all possible sums
of the results. For example if I append as follows:

(100) → (100 101) (010) → (010 110) (001) → (001 011)

I get the example C we introduced last lecture. For example

(110 011) = (100 101) + (010 110) and

(111 000) = (100 101) + (010 110) + (001 011).

2 / 15

Producing a group code

One way to look at the set of messages Zm
2 is to think of it as being all

possible sums of certain basic strings. For a small example, you can take
Z3
2 and get the 7 nonzero strings by summing combinations of the 3

strings (100), (010), (001). We get (000) if we add any of these to itself.
If we perform an encoding by appending bits, we can ensure we get a
group by appending bits to just these 3 and then taking all possible sums
of the results.

For example if I append as follows:

(100) → (100 101) (010) → (010 110) (001) → (001 011)

I get the example C we introduced last lecture. For example

(110 011) = (100 101) + (010 110) and

(111 000) = (100 101) + (010 110) + (001 011).

2 / 15

Producing a group code

One way to look at the set of messages Zm
2 is to think of it as being all

possible sums of certain basic strings. For a small example, you can take
Z3
2 and get the 7 nonzero strings by summing combinations of the 3

strings (100), (010), (001). We get (000) if we add any of these to itself.
If we perform an encoding by appending bits, we can ensure we get a
group by appending bits to just these 3 and then taking all possible sums
of the results. For example if I append as follows:

(100) → (100 101) (010) → (010 110) (001) → (001 011)

I get the example C we introduced last lecture.

For example

(110 011) = (100 101) + (010 110) and

(111 000) = (100 101) + (010 110) + (001 011).

2 / 15

Producing a group code

One way to look at the set of messages Zm
2 is to think of it as being all

possible sums of certain basic strings. For a small example, you can take
Z3
2 and get the 7 nonzero strings by summing combinations of the 3

strings (100), (010), (001). We get (000) if we add any of these to itself.
If we perform an encoding by appending bits, we can ensure we get a
group by appending bits to just these 3 and then taking all possible sums
of the results. For example if I append as follows:

(100) → (100 101) (010) → (010 110) (001) → (001 011)

I get the example C we introduced last lecture. For example

(110 011) = (100 101) + (010 110) and

(111 000) = (100 101) + (010 110) + (001 011).

2 / 15

Producing a group code with error detection

Of course we can’t just randomly append any bits, they have to be chosen
to fulfill the function of a code: error detection and correction.

To be able to detect one error we need a code where the minimum distance
between code words is at least 2. The ASCII even-parity code does this
because a string with an even number of 1s will have an odd number if
only a single bit is changed. The ASCII even-parity code is a group code
that can be obtained by the process discussed on the previous slide.

To get one-bit error correction we need a minimum distance between code
words of at least 3. For a group code, the minimum distance is the
minimum weight of the nonzero code words, so we want to append bits
with enough 1s in them to give us the minimum weight we want

[To be able to discuss general cases we need a notation for the strings with
a single 1 in them. So we let ej stand for the string of all 0s except for a 1
in position j.]

3 / 15

Producing a group code with error detection

Of course we can’t just randomly append any bits, they have to be chosen
to fulfill the function of a code: error detection and correction.

To be able to detect one error we need a code where the minimum distance
between code words is at least 2.

The ASCII even-parity code does this
because a string with an even number of 1s will have an odd number if
only a single bit is changed. The ASCII even-parity code is a group code
that can be obtained by the process discussed on the previous slide.

To get one-bit error correction we need a minimum distance between code
words of at least 3. For a group code, the minimum distance is the
minimum weight of the nonzero code words, so we want to append bits
with enough 1s in them to give us the minimum weight we want

[To be able to discuss general cases we need a notation for the strings with
a single 1 in them. So we let ej stand for the string of all 0s except for a 1
in position j.]

3 / 15

Producing a group code with error detection

Of course we can’t just randomly append any bits, they have to be chosen
to fulfill the function of a code: error detection and correction.

To be able to detect one error we need a code where the minimum distance
between code words is at least 2. The ASCII even-parity code does this
because a string with an even number of 1s will have an odd number if
only a single bit is changed.

The ASCII even-parity code is a group code
that can be obtained by the process discussed on the previous slide.

To get one-bit error correction we need a minimum distance between code
words of at least 3. For a group code, the minimum distance is the
minimum weight of the nonzero code words, so we want to append bits
with enough 1s in them to give us the minimum weight we want

[To be able to discuss general cases we need a notation for the strings with
a single 1 in them. So we let ej stand for the string of all 0s except for a 1
in position j.]

3 / 15

Producing a group code with error detection

Of course we can’t just randomly append any bits, they have to be chosen
to fulfill the function of a code: error detection and correction.

To be able to detect one error we need a code where the minimum distance
between code words is at least 2. The ASCII even-parity code does this
because a string with an even number of 1s will have an odd number if
only a single bit is changed. The ASCII even-parity code is a group code
that can be obtained by the process discussed on the previous slide.

To get one-bit error correction we need a minimum distance between code
words of at least 3. For a group code, the minimum distance is the
minimum weight of the nonzero code words, so we want to append bits
with enough 1s in them to give us the minimum weight we want

[To be able to discuss general cases we need a notation for the strings with
a single 1 in them. So we let ej stand for the string of all 0s except for a 1
in position j.]

3 / 15

Producing a group code with error detection

Of course we can’t just randomly append any bits, they have to be chosen
to fulfill the function of a code: error detection and correction.

To be able to detect one error we need a code where the minimum distance
between code words is at least 2. The ASCII even-parity code does this
because a string with an even number of 1s will have an odd number if
only a single bit is changed. The ASCII even-parity code is a group code
that can be obtained by the process discussed on the previous slide.

To get one-bit error correction we need a minimum distance between code
words of at least 3.

For a group code, the minimum distance is the
minimum weight of the nonzero code words, so we want to append bits
with enough 1s in them to give us the minimum weight we want

[To be able to discuss general cases we need a notation for the strings with
a single 1 in them. So we let ej stand for the string of all 0s except for a 1
in position j.]

3 / 15

Producing a group code with error detection

Of course we can’t just randomly append any bits, they have to be chosen
to fulfill the function of a code: error detection and correction.

To be able to detect one error we need a code where the minimum distance
between code words is at least 2. The ASCII even-parity code does this
because a string with an even number of 1s will have an odd number if
only a single bit is changed. The ASCII even-parity code is a group code
that can be obtained by the process discussed on the previous slide.

To get one-bit error correction we need a minimum distance between code
words of at least 3. For a group code, the minimum distance is the
minimum weight of the nonzero code words,

so we want to append bits
with enough 1s in them to give us the minimum weight we want

[To be able to discuss general cases we need a notation for the strings with
a single 1 in them. So we let ej stand for the string of all 0s except for a 1
in position j.]

3 / 15

Producing a group code with error detection

Of course we can’t just randomly append any bits, they have to be chosen
to fulfill the function of a code: error detection and correction.

To be able to detect one error we need a code where the minimum distance
between code words is at least 2. The ASCII even-parity code does this
because a string with an even number of 1s will have an odd number if
only a single bit is changed. The ASCII even-parity code is a group code
that can be obtained by the process discussed on the previous slide.

To get one-bit error correction we need a minimum distance between code
words of at least 3. For a group code, the minimum distance is the
minimum weight of the nonzero code words, so we want to append bits
with enough 1s in them to give us the minimum weight we want

[To be able to discuss general cases we need a notation for the strings with
a single 1 in them. So we let ej stand for the string of all 0s except for a 1
in position j.]

3 / 15

Producing a group code with error detection

Of course we can’t just randomly append any bits, they have to be chosen
to fulfill the function of a code: error detection and correction.

To be able to detect one error we need a code where the minimum distance
between code words is at least 2. The ASCII even-parity code does this
because a string with an even number of 1s will have an odd number if
only a single bit is changed. The ASCII even-parity code is a group code
that can be obtained by the process discussed on the previous slide.

To get one-bit error correction we need a minimum distance between code
words of at least 3. For a group code, the minimum distance is the
minimum weight of the nonzero code words, so we want to append bits
with enough 1s in them to give us the minimum weight we want

[To be able to discuss general cases we need a notation for the strings with
a single 1 in them. So we let ej stand for the string of all 0s except for a 1
in position j.]

3 / 15

A way to do this efficiently: Generator matrices

For our example Z3
2, the 3 basic strings were e1, e2, e3.

These all have
weight 1 and so if we append bits, then the string we append has to have
enough weight to bring the total weight up to the level we want. For
example if we want the minimum weight to be 3 we need at least two
more 1s. Consider the matrix

G =

 1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1


Its rows are exactly the elements e1, e2, e3 from Z3

2, each with the bits
from before appended. To get all possible sums of these rows (plus the
zero string) we can do matrix multiplication. That is, to get the sum of
the first two rows, multiply by (110):

(110)G = (100101) + (010110) = (110011)

4 / 15

A way to do this efficiently: Generator matrices

For our example Z3
2, the 3 basic strings were e1, e2, e3. These all have

weight 1 and so if we append bits, then the string we append has to have
enough weight to bring the total weight up to the level we want.

For
example if we want the minimum weight to be 3 we need at least two
more 1s. Consider the matrix

G =

 1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1


Its rows are exactly the elements e1, e2, e3 from Z3

2, each with the bits
from before appended. To get all possible sums of these rows (plus the
zero string) we can do matrix multiplication. That is, to get the sum of
the first two rows, multiply by (110):

(110)G = (100101) + (010110) = (110011)

4 / 15

A way to do this efficiently: Generator matrices

For our example Z3
2, the 3 basic strings were e1, e2, e3. These all have

weight 1 and so if we append bits, then the string we append has to have
enough weight to bring the total weight up to the level we want. For
example if we want the minimum weight to be 3 we need at least two
more 1s.

Consider the matrix

G =

 1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1


Its rows are exactly the elements e1, e2, e3 from Z3

2, each with the bits
from before appended. To get all possible sums of these rows (plus the
zero string) we can do matrix multiplication. That is, to get the sum of
the first two rows, multiply by (110):

(110)G = (100101) + (010110) = (110011)

4 / 15

A way to do this efficiently: Generator matrices

For our example Z3
2, the 3 basic strings were e1, e2, e3. These all have

weight 1 and so if we append bits, then the string we append has to have
enough weight to bring the total weight up to the level we want. For
example if we want the minimum weight to be 3 we need at least two
more 1s. Consider the matrix

G =

 1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1


Its rows are exactly the elements e1, e2, e3 from Z3

2, each with the bits
from before appended.

To get all possible sums of these rows (plus the
zero string) we can do matrix multiplication. That is, to get the sum of
the first two rows, multiply by (110):

(110)G = (100101) + (010110) = (110011)

4 / 15

A way to do this efficiently: Generator matrices

For our example Z3
2, the 3 basic strings were e1, e2, e3. These all have

weight 1 and so if we append bits, then the string we append has to have
enough weight to bring the total weight up to the level we want. For
example if we want the minimum weight to be 3 we need at least two
more 1s. Consider the matrix

G =

 1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1


Its rows are exactly the elements e1, e2, e3 from Z3

2, each with the bits
from before appended. To get all possible sums of these rows (plus the
zero string) we can do matrix multiplication.

That is, to get the sum of
the first two rows, multiply by (110):

(110)G = (100101) + (010110) = (110011)

4 / 15

A way to do this efficiently: Generator matrices

For our example Z3
2, the 3 basic strings were e1, e2, e3. These all have

weight 1 and so if we append bits, then the string we append has to have
enough weight to bring the total weight up to the level we want. For
example if we want the minimum weight to be 3 we need at least two
more 1s. Consider the matrix

G =

 1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1


Its rows are exactly the elements e1, e2, e3 from Z3

2, each with the bits
from before appended. To get all possible sums of these rows (plus the
zero string) we can do matrix multiplication. That is, to get the sum of
the first two rows, multiply by (110):

(110)G = (100101) + (010110) = (110011)

4 / 15

You should know matrix multiplication for real numbers; this is just like
that except the operations are performed in Z2: that is, mod 2.

If you
have trouble with matrix multiplication, no worries: to find the product
wG, just add the rows in G that correspond to the position of 1s in w
(adding mod 2). For example (011)G is the sum (mod 2) of the 2nd and
3rd rows of G. The case (000)G produces a string of just 0s. The set of
all possible wG is the entire code.

The vertical bar in our example G is just to visually separate the two
distinctive parts of our matrix: the basic elements of Z3

2 on the left, the
added bits on the right.

Here’s another example, which generates a code in Z7
2 for message words

from Z4
2:

G =


1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1
0 0 0 1 1 1 1



5 / 15

You should know matrix multiplication for real numbers; this is just like
that except the operations are performed in Z2: that is, mod 2. If you
have trouble with matrix multiplication, no worries: to find the product
wG, just add the rows in G that correspond to the position of 1s in w
(adding mod 2).

For example (011)G is the sum (mod 2) of the 2nd and
3rd rows of G. The case (000)G produces a string of just 0s. The set of
all possible wG is the entire code.

The vertical bar in our example G is just to visually separate the two
distinctive parts of our matrix: the basic elements of Z3

2 on the left, the
added bits on the right.

Here’s another example, which generates a code in Z7
2 for message words

from Z4
2:

G =


1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1
0 0 0 1 1 1 1



5 / 15

You should know matrix multiplication for real numbers; this is just like
that except the operations are performed in Z2: that is, mod 2. If you
have trouble with matrix multiplication, no worries: to find the product
wG, just add the rows in G that correspond to the position of 1s in w
(adding mod 2). For example (011)G is the sum (mod 2) of the 2nd and
3rd rows of G.

The case (000)G produces a string of just 0s. The set of
all possible wG is the entire code.

The vertical bar in our example G is just to visually separate the two
distinctive parts of our matrix: the basic elements of Z3

2 on the left, the
added bits on the right.

Here’s another example, which generates a code in Z7
2 for message words

from Z4
2:

G =


1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1
0 0 0 1 1 1 1



5 / 15

You should know matrix multiplication for real numbers; this is just like
that except the operations are performed in Z2: that is, mod 2. If you
have trouble with matrix multiplication, no worries: to find the product
wG, just add the rows in G that correspond to the position of 1s in w
(adding mod 2). For example (011)G is the sum (mod 2) of the 2nd and
3rd rows of G. The case (000)G produces a string of just 0s.

The set of
all possible wG is the entire code.

The vertical bar in our example G is just to visually separate the two
distinctive parts of our matrix: the basic elements of Z3

2 on the left, the
added bits on the right.

Here’s another example, which generates a code in Z7
2 for message words

from Z4
2:

G =


1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1
0 0 0 1 1 1 1



5 / 15

You should know matrix multiplication for real numbers; this is just like
that except the operations are performed in Z2: that is, mod 2. If you
have trouble with matrix multiplication, no worries: to find the product
wG, just add the rows in G that correspond to the position of 1s in w
(adding mod 2). For example (011)G is the sum (mod 2) of the 2nd and
3rd rows of G. The case (000)G produces a string of just 0s. The set of
all possible wG is the entire code.

The vertical bar in our example G is just to visually separate the two
distinctive parts of our matrix: the basic elements of Z3

2 on the left, the
added bits on the right.

Here’s another example, which generates a code in Z7
2 for message words

from Z4
2:

G =


1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1
0 0 0 1 1 1 1



5 / 15

You should know matrix multiplication for real numbers; this is just like
that except the operations are performed in Z2: that is, mod 2. If you
have trouble with matrix multiplication, no worries: to find the product
wG, just add the rows in G that correspond to the position of 1s in w
(adding mod 2). For example (011)G is the sum (mod 2) of the 2nd and
3rd rows of G. The case (000)G produces a string of just 0s. The set of
all possible wG is the entire code.

The vertical bar in our example G is just to visually separate the two
distinctive parts of our matrix: the basic elements of Z3

2 on the left, the
added bits on the right.

Here’s another example, which generates a code in Z7
2 for message words

from Z4
2:

G =


1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1
0 0 0 1 1 1 1



5 / 15

You should know matrix multiplication for real numbers; this is just like
that except the operations are performed in Z2: that is, mod 2. If you
have trouble with matrix multiplication, no worries: to find the product
wG, just add the rows in G that correspond to the position of 1s in w
(adding mod 2). For example (011)G is the sum (mod 2) of the 2nd and
3rd rows of G. The case (000)G produces a string of just 0s. The set of
all possible wG is the entire code.

The vertical bar in our example G is just to visually separate the two
distinctive parts of our matrix: the basic elements of Z3

2 on the left, the
added bits on the right.

Here’s another example, which generates a code in Z7
2 for message words

from Z4
2:

G =


1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1
0 0 0 1 1 1 1



5 / 15

You should know matrix multiplication for real numbers; this is just like
that except the operations are performed in Z2: that is, mod 2. If you
have trouble with matrix multiplication, no worries: to find the product
wG, just add the rows in G that correspond to the position of 1s in w
(adding mod 2). For example (011)G is the sum (mod 2) of the 2nd and
3rd rows of G. The case (000)G produces a string of just 0s. The set of
all possible wG is the entire code.

The vertical bar in our example G is just to visually separate the two
distinctive parts of our matrix: the basic elements of Z3

2 on the left, the
added bits on the right.

Here’s another example, which generates a code in Z7
2 for message words

from Z4
2:

G =


1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1
0 0 0 1 1 1 1


5 / 15

Structure of the Generating matrix

Both of our examples have the following form G = (I | A), where I is an
identity matrix. The identity matrix has m rows and m columns and
consist mostly of 0s except for a diagonal of 1s from upper left to lower
right. Its purpose is to take a w in Zm

2 and reproduce it exactly. That is,
wG will be a string whose length is the same as the length of the rows of
G, but the first m bits will be a copy of w.

The matrix A on the right of G is the part that appends parity bits, (i.e.,
it serves to produce the rest of wG, after the copy of w). Let’s write a
formula for wG using the example G from the previous slide and writing
w = (w1w2w3w4) where each wj are either a 0 or a 1.

(w1w2w3w4)


1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1
0 0 0 1 1 1 1


= (w1w2w3w4(w1 + w2 + w4)(w2 + w3 + w4)(w1 + w3 + w4))

6 / 15

Structure of the Generating matrix

Both of our examples have the following form G = (I | A), where I is an
identity matrix.

The identity matrix has m rows and m columns and
consist mostly of 0s except for a diagonal of 1s from upper left to lower
right. Its purpose is to take a w in Zm

2 and reproduce it exactly. That is,
wG will be a string whose length is the same as the length of the rows of
G, but the first m bits will be a copy of w.

The matrix A on the right of G is the part that appends parity bits, (i.e.,
it serves to produce the rest of wG, after the copy of w). Let’s write a
formula for wG using the example G from the previous slide and writing
w = (w1w2w3w4) where each wj are either a 0 or a 1.

(w1w2w3w4)


1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1
0 0 0 1 1 1 1


= (w1w2w3w4(w1 + w2 + w4)(w2 + w3 + w4)(w1 + w3 + w4))

6 / 15

Structure of the Generating matrix

Both of our examples have the following form G = (I | A), where I is an
identity matrix. The identity matrix has m rows and m columns and
consist mostly of 0s except for a diagonal of 1s from upper left to lower
right.

Its purpose is to take a w in Zm
2 and reproduce it exactly. That is,

wG will be a string whose length is the same as the length of the rows of
G, but the first m bits will be a copy of w.

The matrix A on the right of G is the part that appends parity bits, (i.e.,
it serves to produce the rest of wG, after the copy of w). Let’s write a
formula for wG using the example G from the previous slide and writing
w = (w1w2w3w4) where each wj are either a 0 or a 1.

(w1w2w3w4)


1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1
0 0 0 1 1 1 1


= (w1w2w3w4(w1 + w2 + w4)(w2 + w3 + w4)(w1 + w3 + w4))

6 / 15

Structure of the Generating matrix

Both of our examples have the following form G = (I | A), where I is an
identity matrix. The identity matrix has m rows and m columns and
consist mostly of 0s except for a diagonal of 1s from upper left to lower
right. Its purpose is to take a w in Zm

2 and reproduce it exactly.

That is,
wG will be a string whose length is the same as the length of the rows of
G, but the first m bits will be a copy of w.

The matrix A on the right of G is the part that appends parity bits, (i.e.,
it serves to produce the rest of wG, after the copy of w). Let’s write a
formula for wG using the example G from the previous slide and writing
w = (w1w2w3w4) where each wj are either a 0 or a 1.

(w1w2w3w4)


1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1
0 0 0 1 1 1 1


= (w1w2w3w4(w1 + w2 + w4)(w2 + w3 + w4)(w1 + w3 + w4))

6 / 15

Structure of the Generating matrix

Both of our examples have the following form G = (I | A), where I is an
identity matrix. The identity matrix has m rows and m columns and
consist mostly of 0s except for a diagonal of 1s from upper left to lower
right. Its purpose is to take a w in Zm

2 and reproduce it exactly. That is,
wG will be a string whose length is the same as the length of the rows of
G, but the first m bits will be a copy of w.

The matrix A on the right of G is the part that appends parity bits, (i.e.,
it serves to produce the rest of wG, after the copy of w). Let’s write a
formula for wG using the example G from the previous slide and writing
w = (w1w2w3w4) where each wj are either a 0 or a 1.

(w1w2w3w4)


1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1
0 0 0 1 1 1 1


= (w1w2w3w4(w1 + w2 + w4)(w2 + w3 + w4)(w1 + w3 + w4))

6 / 15

Structure of the Generating matrix

Both of our examples have the following form G = (I | A), where I is an
identity matrix. The identity matrix has m rows and m columns and
consist mostly of 0s except for a diagonal of 1s from upper left to lower
right. Its purpose is to take a w in Zm

2 and reproduce it exactly. That is,
wG will be a string whose length is the same as the length of the rows of
G, but the first m bits will be a copy of w.

The matrix A on the right of G is the part that appends parity bits, (i.e.,
it serves to produce the rest of wG, after the copy of w).

Let’s write a
formula for wG using the example G from the previous slide and writing
w = (w1w2w3w4) where each wj are either a 0 or a 1.

(w1w2w3w4)


1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1
0 0 0 1 1 1 1


= (w1w2w3w4(w1 + w2 + w4)(w2 + w3 + w4)(w1 + w3 + w4))

6 / 15

Structure of the Generating matrix

Both of our examples have the following form G = (I | A), where I is an
identity matrix. The identity matrix has m rows and m columns and
consist mostly of 0s except for a diagonal of 1s from upper left to lower
right. Its purpose is to take a w in Zm

2 and reproduce it exactly. That is,
wG will be a string whose length is the same as the length of the rows of
G, but the first m bits will be a copy of w.

The matrix A on the right of G is the part that appends parity bits, (i.e.,
it serves to produce the rest of wG, after the copy of w). Let’s write a
formula for wG using the example G from the previous slide and writing
w = (w1w2w3w4) where each wj are either a 0 or a 1.

(w1w2w3w4)


1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1
0 0 0 1 1 1 1


= (w1w2w3w4(w1 + w2 + w4)(w2 + w3 + w4)(w1 + w3 + w4))

6 / 15

Structure of the Generating matrix

Both of our examples have the following form G = (I | A), where I is an
identity matrix. The identity matrix has m rows and m columns and
consist mostly of 0s except for a diagonal of 1s from upper left to lower
right. Its purpose is to take a w in Zm

2 and reproduce it exactly. That is,
wG will be a string whose length is the same as the length of the rows of
G, but the first m bits will be a copy of w.

The matrix A on the right of G is the part that appends parity bits, (i.e.,
it serves to produce the rest of wG, after the copy of w). Let’s write a
formula for wG using the example G from the previous slide and writing
w = (w1w2w3w4) where each wj are either a 0 or a 1.

(w1w2w3w4)


1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1
0 0 0 1 1 1 1


= (w1w2w3w4(w1 + w2 + w4)(w2 + w3 + w4)(w1 + w3 + w4))

6 / 15

The extra bits, for example w1 + w2 + w4 in the 5th position, are called
parity bits because the effect they have is that the bits of wG in certain
positions must have an even number of 1s.

For example the 1st, 2nd, 4th
and 5th position will have an even number of 1s.

This formula allows us to take a received word r = (r1 r2 r3 r4 r5 r6 r7) and
test whether it is a code word. If all 7 bits have survived unchanged, then
(r1 r2 r3 r4)G must equal r. That means that r5 must be r1 + r2 + r4 and
so on. Thus the receiver’s test for correctness is to check the following
equations (parity check):

r1 + r2 + r4 = r5

r2 + r3 + r4 = r6

r1 + r3 + r4 = r7

This is easier to coordinate if we rearrange it, using the fact that in Z2,
x+ x is always zero.

7 / 15

The extra bits, for example w1 + w2 + w4 in the 5th position, are called
parity bits because the effect they have is that the bits of wG in certain
positions must have an even number of 1s. For example the 1st, 2nd, 4th
and 5th position will have an even number of 1s.

This formula allows us to take a received word r = (r1 r2 r3 r4 r5 r6 r7) and
test whether it is a code word. If all 7 bits have survived unchanged, then
(r1 r2 r3 r4)G must equal r. That means that r5 must be r1 + r2 + r4 and
so on. Thus the receiver’s test for correctness is to check the following
equations (parity check):

r1 + r2 + r4 = r5

r2 + r3 + r4 = r6

r1 + r3 + r4 = r7

This is easier to coordinate if we rearrange it, using the fact that in Z2,
x+ x is always zero.

7 / 15

The extra bits, for example w1 + w2 + w4 in the 5th position, are called
parity bits because the effect they have is that the bits of wG in certain
positions must have an even number of 1s. For example the 1st, 2nd, 4th
and 5th position will have an even number of 1s.

This formula allows us to take a received word r = (r1 r2 r3 r4 r5 r6 r7) and
test whether it is a code word.

If all 7 bits have survived unchanged, then
(r1 r2 r3 r4)G must equal r. That means that r5 must be r1 + r2 + r4 and
so on. Thus the receiver’s test for correctness is to check the following
equations (parity check):

r1 + r2 + r4 = r5

r2 + r3 + r4 = r6

r1 + r3 + r4 = r7

This is easier to coordinate if we rearrange it, using the fact that in Z2,
x+ x is always zero.

7 / 15

The extra bits, for example w1 + w2 + w4 in the 5th position, are called
parity bits because the effect they have is that the bits of wG in certain
positions must have an even number of 1s. For example the 1st, 2nd, 4th
and 5th position will have an even number of 1s.

This formula allows us to take a received word r = (r1 r2 r3 r4 r5 r6 r7) and
test whether it is a code word. If all 7 bits have survived unchanged, then
(r1 r2 r3 r4)G must equal r. That means that r5 must be r1 + r2 + r4 and
so on.

Thus the receiver’s test for correctness is to check the following
equations (parity check):

r1 + r2 + r4 = r5

r2 + r3 + r4 = r6

r1 + r3 + r4 = r7

This is easier to coordinate if we rearrange it, using the fact that in Z2,
x+ x is always zero.

7 / 15

The extra bits, for example w1 + w2 + w4 in the 5th position, are called
parity bits because the effect they have is that the bits of wG in certain
positions must have an even number of 1s. For example the 1st, 2nd, 4th
and 5th position will have an even number of 1s.

This formula allows us to take a received word r = (r1 r2 r3 r4 r5 r6 r7) and
test whether it is a code word. If all 7 bits have survived unchanged, then
(r1 r2 r3 r4)G must equal r. That means that r5 must be r1 + r2 + r4 and
so on. Thus the receiver’s test for correctness is to check the following
equations (parity check):

r1 + r2 + r4 = r5

r2 + r3 + r4 = r6

r1 + r3 + r4 = r7

This is easier to coordinate if we rearrange it, using the fact that in Z2,
x+ x is always zero.

7 / 15

The extra bits, for example w1 + w2 + w4 in the 5th position, are called
parity bits because the effect they have is that the bits of wG in certain
positions must have an even number of 1s. For example the 1st, 2nd, 4th
and 5th position will have an even number of 1s.

This formula allows us to take a received word r = (r1 r2 r3 r4 r5 r6 r7) and
test whether it is a code word. If all 7 bits have survived unchanged, then
(r1 r2 r3 r4)G must equal r. That means that r5 must be r1 + r2 + r4 and
so on. Thus the receiver’s test for correctness is to check the following
equations (parity check):

r1 + r2 + r4 = r5

r2 + r3 + r4 = r6

r1 + r3 + r4 = r7

This is easier to coordinate if we rearrange it, using the fact that in Z2,
x+ x is always zero.

7 / 15

Thus if we add r5 to both sides of the first equation, the right side
becomes 0, etc.

These parity check equation become

r1 + r2 + r4 + r5 = 0
r2 + r3 + r4 + r6 = 0

r1 + r3 + r4 + r7 = 0

Each of these sums says that an even number of the variables have to be 1s

These equations can be written in matrix form as

 1 1 0 1 1 0 0
0 1 1 1 0 1 0
1 0 1 1 0 0 1




r1
r2
r3
r4
r5
r6
r7


=

 0
0
0



8 / 15

Thus if we add r5 to both sides of the first equation, the right side
becomes 0, etc. These parity check equation become

r1 + r2 + r4 + r5 = 0
r2 + r3 + r4 + r6 = 0

r1 + r3 + r4 + r7 = 0

Each of these sums says that an even number of the variables have to be 1s

These equations can be written in matrix form as

 1 1 0 1 1 0 0
0 1 1 1 0 1 0
1 0 1 1 0 0 1




r1
r2
r3
r4
r5
r6
r7


=

 0
0
0



8 / 15

Thus if we add r5 to both sides of the first equation, the right side
becomes 0, etc. These parity check equation become

r1 + r2 + r4 + r5 = 0
r2 + r3 + r4 + r6 = 0

r1 + r3 + r4 + r7 = 0

Each of these sums says that an even number of the variables have to be 1s

These equations can be written in matrix form as

 1 1 0 1 1 0 0
0 1 1 1 0 1 0
1 0 1 1 0 0 1




r1
r2
r3
r4
r5
r6
r7


=

 0
0
0



8 / 15

Thus if we add r5 to both sides of the first equation, the right side
becomes 0, etc. These parity check equation become

r1 + r2 + r4 + r5 = 0
r2 + r3 + r4 + r6 = 0

r1 + r3 + r4 + r7 = 0

Each of these sums says that an even number of the variables have to be 1s

These equations can be written in matrix form as

 1 1 0 1 1 0 0
0 1 1 1 0 1 0
1 0 1 1 0 0 1




r1
r2
r3
r4
r5
r6
r7


=

 0
0
0



8 / 15

The equation on the previous slide could also be rewritten by taking the
transpose:

(r1 r2 r3 r4 r5 r6 r7)



1 0 1
1 1 0
0 1 1
1 1 1

1 0 0
0 1 0
0 0 1


=

(
0 0 0

)

But our book has chosen to use the other way.

9 / 15

The leftmost matrix in the previous equation is denoted H and is called
the parity-check matrix for G.

It can easily be written down just by
examining G. If G = (I | A) then H = (Atr | I). The notation Atr means
the transpose of A and it is obtained by taking each row of A, starting at
the top, and writing its entries in a column. The first (top) row of A
becomes the first (leftmost) column of Atr. For example

(
a b c
d e f

)tr

=

a d
b e
c f

 .

To save space, we often write a single column matrix, like the one
containing r1 through r7 on the previous slide, as the transpose of a row:
(r1r2r3r4r5r6r7)

tr. Thus, our parity-check procedure is to compute Hrtr

and check if it is a column of 0s.

10 / 15

The leftmost matrix in the previous equation is denoted H and is called
the parity-check matrix for G. It can easily be written down just by
examining G. If G = (I | A) then H = (Atr | I).

The notation Atr means
the transpose of A and it is obtained by taking each row of A, starting at
the top, and writing its entries in a column. The first (top) row of A
becomes the first (leftmost) column of Atr. For example

(
a b c
d e f

)tr

=

a d
b e
c f

 .

To save space, we often write a single column matrix, like the one
containing r1 through r7 on the previous slide, as the transpose of a row:
(r1r2r3r4r5r6r7)

tr. Thus, our parity-check procedure is to compute Hrtr

and check if it is a column of 0s.

10 / 15

The leftmost matrix in the previous equation is denoted H and is called
the parity-check matrix for G. It can easily be written down just by
examining G. If G = (I | A) then H = (Atr | I). The notation Atr means
the transpose of A and it is obtained by taking each row of A, starting at
the top, and writing its entries in a column.

The first (top) row of A
becomes the first (leftmost) column of Atr. For example

(
a b c
d e f

)tr

=

a d
b e
c f

 .

To save space, we often write a single column matrix, like the one
containing r1 through r7 on the previous slide, as the transpose of a row:
(r1r2r3r4r5r6r7)

tr. Thus, our parity-check procedure is to compute Hrtr

and check if it is a column of 0s.

10 / 15

The leftmost matrix in the previous equation is denoted H and is called
the parity-check matrix for G. It can easily be written down just by
examining G. If G = (I | A) then H = (Atr | I). The notation Atr means
the transpose of A and it is obtained by taking each row of A, starting at
the top, and writing its entries in a column. The first (top) row of A
becomes the first (leftmost) column of Atr.

For example

(
a b c
d e f

)tr

=

a d
b e
c f

 .

To save space, we often write a single column matrix, like the one
containing r1 through r7 on the previous slide, as the transpose of a row:
(r1r2r3r4r5r6r7)

tr. Thus, our parity-check procedure is to compute Hrtr

and check if it is a column of 0s.

10 / 15

The leftmost matrix in the previous equation is denoted H and is called
the parity-check matrix for G. It can easily be written down just by
examining G. If G = (I | A) then H = (Atr | I). The notation Atr means
the transpose of A and it is obtained by taking each row of A, starting at
the top, and writing its entries in a column. The first (top) row of A
becomes the first (leftmost) column of Atr. For example

(
a b c
d e f

)tr

=

a d
b e
c f

 .

To save space, we often write a single column matrix, like the one
containing r1 through r7 on the previous slide, as the transpose of a row:
(r1r2r3r4r5r6r7)

tr. Thus, our parity-check procedure is to compute Hrtr

and check if it is a column of 0s.

10 / 15

The leftmost matrix in the previous equation is denoted H and is called
the parity-check matrix for G. It can easily be written down just by
examining G. If G = (I | A) then H = (Atr | I). The notation Atr means
the transpose of A and it is obtained by taking each row of A, starting at
the top, and writing its entries in a column. The first (top) row of A
becomes the first (leftmost) column of Atr. For example

(
a b c
d e f

)tr

=

a d
b e
c f

 .

To save space, we often write a single column matrix, like the one
containing r1 through r7 on the previous slide, as the transpose of a row:
(r1r2r3r4r5r6r7)

tr.

Thus, our parity-check procedure is to compute Hrtr

and check if it is a column of 0s.

10 / 15

The leftmost matrix in the previous equation is denoted H and is called
the parity-check matrix for G. It can easily be written down just by
examining G. If G = (I | A) then H = (Atr | I). The notation Atr means
the transpose of A and it is obtained by taking each row of A, starting at
the top, and writing its entries in a column. The first (top) row of A
becomes the first (leftmost) column of Atr. For example

(
a b c
d e f

)tr

=

a d
b e
c f

 .

To save space, we often write a single column matrix, like the one
containing r1 through r7 on the previous slide, as the transpose of a row:
(r1r2r3r4r5r6r7)

tr. Thus, our parity-check procedure is to compute Hrtr

and check if it is a column of 0s.

10 / 15

Note that multiplying a matrix by a column (in that order) is different
than multiplying a row times a matrix. To compute Hrtr you must add up
the columns in H that correspond to the position of 1s in r.

Here is a new example where all these ideas are worked out in some detail.
If our code generator matrix G is

G =

 1 0 0 1 1 0
0 1 0 1 1 1
0 0 1 1 0 1

 then A =

 1 1 0
1 1 1
1 0 1


And so,

Atr =

 1 1 1
1 1 0
0 1 1

 and H =

 1 1 1 1 0 0
1 1 0 0 1 0
0 1 1 0 0 1



11 / 15

Note that multiplying a matrix by a column (in that order) is different
than multiplying a row times a matrix. To compute Hrtr you must add up
the columns in H that correspond to the position of 1s in r.

Here is a new example where all these ideas are worked out in some detail.

If our code generator matrix G is

G =

 1 0 0 1 1 0
0 1 0 1 1 1
0 0 1 1 0 1

 then A =

 1 1 0
1 1 1
1 0 1


And so,

Atr =

 1 1 1
1 1 0
0 1 1

 and H =

 1 1 1 1 0 0
1 1 0 0 1 0
0 1 1 0 0 1



11 / 15

Note that multiplying a matrix by a column (in that order) is different
than multiplying a row times a matrix. To compute Hrtr you must add up
the columns in H that correspond to the position of 1s in r.

Here is a new example where all these ideas are worked out in some detail.
If our code generator matrix G is

G =

 1 0 0 1 1 0
0 1 0 1 1 1
0 0 1 1 0 1

 then A =

 1 1 0
1 1 1
1 0 1



And so,

Atr =

 1 1 1
1 1 0
0 1 1

 and H =

 1 1 1 1 0 0
1 1 0 0 1 0
0 1 1 0 0 1



11 / 15

Note that multiplying a matrix by a column (in that order) is different
than multiplying a row times a matrix. To compute Hrtr you must add up
the columns in H that correspond to the position of 1s in r.

Here is a new example where all these ideas are worked out in some detail.
If our code generator matrix G is

G =

 1 0 0 1 1 0
0 1 0 1 1 1
0 0 1 1 0 1

 then A =

 1 1 0
1 1 1
1 0 1


And so,

Atr =

 1 1 1
1 1 0
0 1 1

 and H =

 1 1 1 1 0 0
1 1 0 0 1 0
0 1 1 0 0 1



11 / 15

Now suppose we and a remote site have arranged to use this code to send
3-bit messages, and I want to send w = (101).

The first step is to encode
it:

wG = (101011)

So the code word is c = (101011). Suppose, when we transmit this c to
our remote site it arrives as r = (100011) with an error in the 3rd position.
Our colleagues there will check it by multiplication:

Hrtr =

1
0
1

 (or (101)tr).

Since the result is not (000)tr they know there is an error.

12 / 15

Now suppose we and a remote site have arranged to use this code to send
3-bit messages, and I want to send w = (101). The first step is to encode
it:

wG = (101011)

So the code word is c = (101011).

Suppose, when we transmit this c to
our remote site it arrives as r = (100011) with an error in the 3rd position.
Our colleagues there will check it by multiplication:

Hrtr =

1
0
1

 (or (101)tr).

Since the result is not (000)tr they know there is an error.

12 / 15

Now suppose we and a remote site have arranged to use this code to send
3-bit messages, and I want to send w = (101). The first step is to encode
it:

wG = (101011)

So the code word is c = (101011). Suppose, when we transmit this c to
our remote site it arrives as r = (100011) with an error in the 3rd position.

Our colleagues there will check it by multiplication:

Hrtr =

1
0
1

 (or (101)tr).

Since the result is not (000)tr they know there is an error.

12 / 15

Now suppose we and a remote site have arranged to use this code to send
3-bit messages, and I want to send w = (101). The first step is to encode
it:

wG = (101011)

So the code word is c = (101011). Suppose, when we transmit this c to
our remote site it arrives as r = (100011) with an error in the 3rd position.
Our colleagues there will check it by multiplication:

Hrtr =

1
0
1

 (or (101)tr).

Since the result is not (000)tr they know there is an error.

12 / 15

Now suppose we and a remote site have arranged to use this code to send
3-bit messages, and I want to send w = (101). The first step is to encode
it:

wG = (101011)

So the code word is c = (101011). Suppose, when we transmit this c to
our remote site it arrives as r = (100011) with an error in the 3rd position.
Our colleagues there will check it by multiplication:

Hrtr =

1
0
1

 (or (101)tr).

Since the result is not (000)tr they know there is an error.

12 / 15

This is a correctable error.

They know this because of the following: if the
rows of A all have weight at least 2 and if they are all different, then
G = (I | A) produces a code with minimum nonzero weight at least 3.
Our example G satisfies all that, so our colleagues only have to find the
closest code word to r to correct it. This is pretty simple here, because
there are only eight words in the code. If our messages had been 64 bits
long then there would be 264 code words, too many to check.

They are saved from having to do those comparisons by the following fact:
if r differs from c in a single bit then r = c+ e where e has only a single 1.
In this example r = c+ e3 where recall e3 means (001000). Our colleagues
don’t know what c is, nor that the error is e3, but they do know that if
r = c+ e then Hrtr = Hctr +Hetr = Hetr, because Hctr is a column of
zeros for code words.

13 / 15

This is a correctable error. They know this because of the following: if the
rows of A all have weight at least 2 and if they are all different, then
G = (I | A) produces a code with minimum nonzero weight at least 3.

Our example G satisfies all that, so our colleagues only have to find the
closest code word to r to correct it. This is pretty simple here, because
there are only eight words in the code. If our messages had been 64 bits
long then there would be 264 code words, too many to check.

They are saved from having to do those comparisons by the following fact:
if r differs from c in a single bit then r = c+ e where e has only a single 1.
In this example r = c+ e3 where recall e3 means (001000). Our colleagues
don’t know what c is, nor that the error is e3, but they do know that if
r = c+ e then Hrtr = Hctr +Hetr = Hetr, because Hctr is a column of
zeros for code words.

13 / 15

This is a correctable error. They know this because of the following: if the
rows of A all have weight at least 2 and if they are all different, then
G = (I | A) produces a code with minimum nonzero weight at least 3.
Our example G satisfies all that, so our colleagues only have to find the
closest code word to r to correct it.

This is pretty simple here, because
there are only eight words in the code. If our messages had been 64 bits
long then there would be 264 code words, too many to check.

They are saved from having to do those comparisons by the following fact:
if r differs from c in a single bit then r = c+ e where e has only a single 1.
In this example r = c+ e3 where recall e3 means (001000). Our colleagues
don’t know what c is, nor that the error is e3, but they do know that if
r = c+ e then Hrtr = Hctr +Hetr = Hetr, because Hctr is a column of
zeros for code words.

13 / 15

This is a correctable error. They know this because of the following: if the
rows of A all have weight at least 2 and if they are all different, then
G = (I | A) produces a code with minimum nonzero weight at least 3.
Our example G satisfies all that, so our colleagues only have to find the
closest code word to r to correct it. This is pretty simple here, because
there are only eight words in the code.

If our messages had been 64 bits
long then there would be 264 code words, too many to check.

They are saved from having to do those comparisons by the following fact:
if r differs from c in a single bit then r = c+ e where e has only a single 1.
In this example r = c+ e3 where recall e3 means (001000). Our colleagues
don’t know what c is, nor that the error is e3, but they do know that if
r = c+ e then Hrtr = Hctr +Hetr = Hetr, because Hctr is a column of
zeros for code words.

13 / 15

This is a correctable error. They know this because of the following: if the
rows of A all have weight at least 2 and if they are all different, then
G = (I | A) produces a code with minimum nonzero weight at least 3.
Our example G satisfies all that, so our colleagues only have to find the
closest code word to r to correct it. This is pretty simple here, because
there are only eight words in the code. If our messages had been 64 bits
long then there would be 264 code words, too many to check.

They are saved from having to do those comparisons by the following fact:
if r differs from c in a single bit then r = c+ e where e has only a single 1.
In this example r = c+ e3 where recall e3 means (001000). Our colleagues
don’t know what c is, nor that the error is e3, but they do know that if
r = c+ e then Hrtr = Hctr +Hetr = Hetr, because Hctr is a column of
zeros for code words.

13 / 15

This is a correctable error. They know this because of the following: if the
rows of A all have weight at least 2 and if they are all different, then
G = (I | A) produces a code with minimum nonzero weight at least 3.
Our example G satisfies all that, so our colleagues only have to find the
closest code word to r to correct it. This is pretty simple here, because
there are only eight words in the code. If our messages had been 64 bits
long then there would be 264 code words, too many to check.

They are saved from having to do those comparisons by the following fact:
if r differs from c in a single bit then r = c+ e where e has only a single 1.

In this example r = c+ e3 where recall e3 means (001000). Our colleagues
don’t know what c is, nor that the error is e3, but they do know that if
r = c+ e then Hrtr = Hctr +Hetr = Hetr, because Hctr is a column of
zeros for code words.

13 / 15

This is a correctable error. They know this because of the following: if the
rows of A all have weight at least 2 and if they are all different, then
G = (I | A) produces a code with minimum nonzero weight at least 3.
Our example G satisfies all that, so our colleagues only have to find the
closest code word to r to correct it. This is pretty simple here, because
there are only eight words in the code. If our messages had been 64 bits
long then there would be 264 code words, too many to check.

They are saved from having to do those comparisons by the following fact:
if r differs from c in a single bit then r = c+ e where e has only a single 1.
In this example r = c+ e3 where recall e3 means (001000).

Our colleagues
don’t know what c is, nor that the error is e3, but they do know that if
r = c+ e then Hrtr = Hctr +Hetr = Hetr, because Hctr is a column of
zeros for code words.

13 / 15

This is a correctable error. They know this because of the following: if the
rows of A all have weight at least 2 and if they are all different, then
G = (I | A) produces a code with minimum nonzero weight at least 3.
Our example G satisfies all that, so our colleagues only have to find the
closest code word to r to correct it. This is pretty simple here, because
there are only eight words in the code. If our messages had been 64 bits
long then there would be 264 code words, too many to check.

They are saved from having to do those comparisons by the following fact:
if r differs from c in a single bit then r = c+ e where e has only a single 1.
In this example r = c+ e3 where recall e3 means (001000). Our colleagues
don’t know what c is, nor that the error is e3, but they do know that if
r = c+ e then Hrtr = Hctr +Hetr = Hetr, because Hctr is a column of
zeros for code words.

13 / 15

But if they know (or assume) that e has only a single 1, then by our rules
for matrix multiplication Hetr will be the column of H corresponding to
the position of the 1 in e.

In our actual example Hrtr = Hetr = (101)tr is
the 3rd column of H. So that pinpoints the error. Our colleagues simply
change the 3rd bit of r from 0 to 1 and get the correct c = (101011).

Finally, the correct word has to be decoded: remove the parity bits. Since
G adds 3 bits they remove the last 3, which have done their job, to get
the message I wanted them to have: (101).

So the rule at the receiving end is: multiply Hrtr then

1. If the result is all zeros, accept r as correct.

2. If the result is one of the columns of H, correct r by changing the bit
in the corresponding position of r.

3. If the result is anything else, then r cannot be corrected (and maybe
ask the senders to try again).

4. In case 1 or 2, they have the correct code word; the original message
is found by removing the parity bits that were added by the encoding.

14 / 15

But if they know (or assume) that e has only a single 1, then by our rules
for matrix multiplication Hetr will be the column of H corresponding to
the position of the 1 in e. In our actual example Hrtr = Hetr = (101)tr is
the 3rd column of H. So that pinpoints the error.

Our colleagues simply
change the 3rd bit of r from 0 to 1 and get the correct c = (101011).

Finally, the correct word has to be decoded: remove the parity bits. Since
G adds 3 bits they remove the last 3, which have done their job, to get
the message I wanted them to have: (101).

So the rule at the receiving end is: multiply Hrtr then

1. If the result is all zeros, accept r as correct.

2. If the result is one of the columns of H, correct r by changing the bit
in the corresponding position of r.

3. If the result is anything else, then r cannot be corrected (and maybe
ask the senders to try again).

4. In case 1 or 2, they have the correct code word; the original message
is found by removing the parity bits that were added by the encoding.

14 / 15

But if they know (or assume) that e has only a single 1, then by our rules
for matrix multiplication Hetr will be the column of H corresponding to
the position of the 1 in e. In our actual example Hrtr = Hetr = (101)tr is
the 3rd column of H. So that pinpoints the error. Our colleagues simply
change the 3rd bit of r from 0 to 1 and get the correct c = (101011).

Finally, the correct word has to be decoded: remove the parity bits. Since
G adds 3 bits they remove the last 3, which have done their job, to get
the message I wanted them to have: (101).

So the rule at the receiving end is: multiply Hrtr then

1. If the result is all zeros, accept r as correct.

2. If the result is one of the columns of H, correct r by changing the bit
in the corresponding position of r.

3. If the result is anything else, then r cannot be corrected (and maybe
ask the senders to try again).

4. In case 1 or 2, they have the correct code word; the original message
is found by removing the parity bits that were added by the encoding.

14 / 15

But if they know (or assume) that e has only a single 1, then by our rules
for matrix multiplication Hetr will be the column of H corresponding to
the position of the 1 in e. In our actual example Hrtr = Hetr = (101)tr is
the 3rd column of H. So that pinpoints the error. Our colleagues simply
change the 3rd bit of r from 0 to 1 and get the correct c = (101011).

Finally, the correct word has to be decoded: remove the parity bits.

Since
G adds 3 bits they remove the last 3, which have done their job, to get
the message I wanted them to have: (101).

So the rule at the receiving end is: multiply Hrtr then

1. If the result is all zeros, accept r as correct.

2. If the result is one of the columns of H, correct r by changing the bit
in the corresponding position of r.

3. If the result is anything else, then r cannot be corrected (and maybe
ask the senders to try again).

4. In case 1 or 2, they have the correct code word; the original message
is found by removing the parity bits that were added by the encoding.

14 / 15

But if they know (or assume) that e has only a single 1, then by our rules
for matrix multiplication Hetr will be the column of H corresponding to
the position of the 1 in e. In our actual example Hrtr = Hetr = (101)tr is
the 3rd column of H. So that pinpoints the error. Our colleagues simply
change the 3rd bit of r from 0 to 1 and get the correct c = (101011).

Finally, the correct word has to be decoded: remove the parity bits. Since
G adds 3 bits they remove the last 3, which have done their job, to get
the message I wanted them to have: (101).

So the rule at the receiving end is: multiply Hrtr then

1. If the result is all zeros, accept r as correct.

2. If the result is one of the columns of H, correct r by changing the bit
in the corresponding position of r.

3. If the result is anything else, then r cannot be corrected (and maybe
ask the senders to try again).

4. In case 1 or 2, they have the correct code word; the original message
is found by removing the parity bits that were added by the encoding.

14 / 15

But if they know (or assume) that e has only a single 1, then by our rules
for matrix multiplication Hetr will be the column of H corresponding to
the position of the 1 in e. In our actual example Hrtr = Hetr = (101)tr is
the 3rd column of H. So that pinpoints the error. Our colleagues simply
change the 3rd bit of r from 0 to 1 and get the correct c = (101011).

Finally, the correct word has to be decoded: remove the parity bits. Since
G adds 3 bits they remove the last 3, which have done their job, to get
the message I wanted them to have: (101).

So the rule at the receiving end is: multiply Hrtr then

1. If the result is all zeros, accept r as correct.

2. If the result is one of the columns of H, correct r by changing the bit
in the corresponding position of r.

3. If the result is anything else, then r cannot be corrected (and maybe
ask the senders to try again).

4. In case 1 or 2, they have the correct code word; the original message
is found by removing the parity bits that were added by the encoding.

14 / 15

But if they know (or assume) that e has only a single 1, then by our rules
for matrix multiplication Hetr will be the column of H corresponding to
the position of the 1 in e. In our actual example Hrtr = Hetr = (101)tr is
the 3rd column of H. So that pinpoints the error. Our colleagues simply
change the 3rd bit of r from 0 to 1 and get the correct c = (101011).

Finally, the correct word has to be decoded: remove the parity bits. Since
G adds 3 bits they remove the last 3, which have done their job, to get
the message I wanted them to have: (101).

So the rule at the receiving end is: multiply Hrtr then

1. If the result is all zeros, accept r as correct.

2. If the result is one of the columns of H, correct r by changing the bit
in the corresponding position of r.

3. If the result is anything else, then r cannot be corrected (and maybe
ask the senders to try again).

4. In case 1 or 2, they have the correct code word; the original message
is found by removing the parity bits that were added by the encoding.

14 / 15

But if they know (or assume) that e has only a single 1, then by our rules
for matrix multiplication Hetr will be the column of H corresponding to
the position of the 1 in e. In our actual example Hrtr = Hetr = (101)tr is
the 3rd column of H. So that pinpoints the error. Our colleagues simply
change the 3rd bit of r from 0 to 1 and get the correct c = (101011).

Finally, the correct word has to be decoded: remove the parity bits. Since
G adds 3 bits they remove the last 3, which have done their job, to get
the message I wanted them to have: (101).

So the rule at the receiving end is: multiply Hrtr then

1. If the result is all zeros, accept r as correct.

2. If the result is one of the columns of H, correct r by changing the bit
in the corresponding position of r.

3. If the result is anything else, then r cannot be corrected (and maybe
ask the senders to try again).

4. In case 1 or 2, they have the correct code word; the original message
is found by removing the parity bits that were added by the encoding.

14 / 15

But if they know (or assume) that e has only a single 1, then by our rules
for matrix multiplication Hetr will be the column of H corresponding to
the position of the 1 in e. In our actual example Hrtr = Hetr = (101)tr is
the 3rd column of H. So that pinpoints the error. Our colleagues simply
change the 3rd bit of r from 0 to 1 and get the correct c = (101011).

Finally, the correct word has to be decoded: remove the parity bits. Since
G adds 3 bits they remove the last 3, which have done their job, to get
the message I wanted them to have: (101).

So the rule at the receiving end is: multiply Hrtr then

1. If the result is all zeros, accept r as correct.

2. If the result is one of the columns of H, correct r by changing the bit
in the corresponding position of r.

3. If the result is anything else, then r cannot be corrected (and maybe
ask the senders to try again).

4. In case 1 or 2, they have the correct code word; the original message
is found by removing the parity bits that were added by the encoding.

14 / 15

If we need only one-bit error correction it can be shown that the number
of bits to add to m-bit messages is a little more than log2m.

For example,
64-bit messages need add only 7 bits. Then G = (I | A) has 64 rows and
71 columns where I has 64 rows and columns and A has 64 rows and 7
columns. Then H = (Atr | I) is 7-by-71 with a 7-row by 64-column Atr

and 7 by 7 identity I. [Note that the two identity matrices are rarely the
same size.] The correction step requires that one compare the result Hrtr

to the columns of H, which is clearly doable.

The book talks about “decoding with coset leaders”. This just means that
instead of comparing to the columns of H, we prepare a table where you
can look up Hrtr and find the error position. The reason for the term
“coset” is that errors correspond to cosets of the code. If C is the group
code, received words with 1-bit errors are in one of the cosets ej + C.

Of course, this scheme corrects only one-bit errors, probably not enough
for reliable transmission of 64 bits at a time. Setting up one that corrects
more errors is beyond the scope of this course.

15 / 15

If we need only one-bit error correction it can be shown that the number
of bits to add to m-bit messages is a little more than log2m. For example,
64-bit messages need add only 7 bits. Then G = (I | A) has 64 rows and
71 columns where I has 64 rows and columns and A has 64 rows and 7
columns.

Then H = (Atr | I) is 7-by-71 with a 7-row by 64-column Atr

and 7 by 7 identity I. [Note that the two identity matrices are rarely the
same size.] The correction step requires that one compare the result Hrtr

to the columns of H, which is clearly doable.

The book talks about “decoding with coset leaders”. This just means that
instead of comparing to the columns of H, we prepare a table where you
can look up Hrtr and find the error position. The reason for the term
“coset” is that errors correspond to cosets of the code. If C is the group
code, received words with 1-bit errors are in one of the cosets ej + C.

Of course, this scheme corrects only one-bit errors, probably not enough
for reliable transmission of 64 bits at a time. Setting up one that corrects
more errors is beyond the scope of this course.

15 / 15

If we need only one-bit error correction it can be shown that the number
of bits to add to m-bit messages is a little more than log2m. For example,
64-bit messages need add only 7 bits. Then G = (I | A) has 64 rows and
71 columns where I has 64 rows and columns and A has 64 rows and 7
columns. Then H = (Atr | I) is 7-by-71 with a 7-row by 64-column Atr

and 7 by 7 identity I. [Note that the two identity matrices are rarely the
same size.]

The correction step requires that one compare the result Hrtr

to the columns of H, which is clearly doable.

The book talks about “decoding with coset leaders”. This just means that
instead of comparing to the columns of H, we prepare a table where you
can look up Hrtr and find the error position. The reason for the term
“coset” is that errors correspond to cosets of the code. If C is the group
code, received words with 1-bit errors are in one of the cosets ej + C.

Of course, this scheme corrects only one-bit errors, probably not enough
for reliable transmission of 64 bits at a time. Setting up one that corrects
more errors is beyond the scope of this course.

15 / 15

If we need only one-bit error correction it can be shown that the number
of bits to add to m-bit messages is a little more than log2m. For example,
64-bit messages need add only 7 bits. Then G = (I | A) has 64 rows and
71 columns where I has 64 rows and columns and A has 64 rows and 7
columns. Then H = (Atr | I) is 7-by-71 with a 7-row by 64-column Atr

and 7 by 7 identity I. [Note that the two identity matrices are rarely the
same size.] The correction step requires that one compare the result Hrtr

to the columns of H, which is clearly doable.

The book talks about “decoding with coset leaders”. This just means that
instead of comparing to the columns of H, we prepare a table where you
can look up Hrtr and find the error position. The reason for the term
“coset” is that errors correspond to cosets of the code. If C is the group
code, received words with 1-bit errors are in one of the cosets ej + C.

Of course, this scheme corrects only one-bit errors, probably not enough
for reliable transmission of 64 bits at a time. Setting up one that corrects
more errors is beyond the scope of this course.

15 / 15

If we need only one-bit error correction it can be shown that the number
of bits to add to m-bit messages is a little more than log2m. For example,
64-bit messages need add only 7 bits. Then G = (I | A) has 64 rows and
71 columns where I has 64 rows and columns and A has 64 rows and 7
columns. Then H = (Atr | I) is 7-by-71 with a 7-row by 64-column Atr

and 7 by 7 identity I. [Note that the two identity matrices are rarely the
same size.] The correction step requires that one compare the result Hrtr

to the columns of H, which is clearly doable.

The book talks about “decoding with coset leaders”.

This just means that
instead of comparing to the columns of H, we prepare a table where you
can look up Hrtr and find the error position. The reason for the term
“coset” is that errors correspond to cosets of the code. If C is the group
code, received words with 1-bit errors are in one of the cosets ej + C.

Of course, this scheme corrects only one-bit errors, probably not enough
for reliable transmission of 64 bits at a time. Setting up one that corrects
more errors is beyond the scope of this course.

15 / 15

If we need only one-bit error correction it can be shown that the number
of bits to add to m-bit messages is a little more than log2m. For example,
64-bit messages need add only 7 bits. Then G = (I | A) has 64 rows and
71 columns where I has 64 rows and columns and A has 64 rows and 7
columns. Then H = (Atr | I) is 7-by-71 with a 7-row by 64-column Atr

and 7 by 7 identity I. [Note that the two identity matrices are rarely the
same size.] The correction step requires that one compare the result Hrtr

to the columns of H, which is clearly doable.

The book talks about “decoding with coset leaders”. This just means that
instead of comparing to the columns of H, we prepare a table where you
can look up Hrtr and find the error position.

The reason for the term
“coset” is that errors correspond to cosets of the code. If C is the group
code, received words with 1-bit errors are in one of the cosets ej + C.

Of course, this scheme corrects only one-bit errors, probably not enough
for reliable transmission of 64 bits at a time. Setting up one that corrects
more errors is beyond the scope of this course.

15 / 15

If we need only one-bit error correction it can be shown that the number
of bits to add to m-bit messages is a little more than log2m. For example,
64-bit messages need add only 7 bits. Then G = (I | A) has 64 rows and
71 columns where I has 64 rows and columns and A has 64 rows and 7
columns. Then H = (Atr | I) is 7-by-71 with a 7-row by 64-column Atr

and 7 by 7 identity I. [Note that the two identity matrices are rarely the
same size.] The correction step requires that one compare the result Hrtr

to the columns of H, which is clearly doable.

The book talks about “decoding with coset leaders”. This just means that
instead of comparing to the columns of H, we prepare a table where you
can look up Hrtr and find the error position. The reason for the term
“coset” is that errors correspond to cosets of the code. If C is the group
code, received words with 1-bit errors are in one of the cosets ej + C.

Of course, this scheme corrects only one-bit errors, probably not enough
for reliable transmission of 64 bits at a time. Setting up one that corrects
more errors is beyond the scope of this course.

15 / 15

If we need only one-bit error correction it can be shown that the number
of bits to add to m-bit messages is a little more than log2m. For example,
64-bit messages need add only 7 bits. Then G = (I | A) has 64 rows and
71 columns where I has 64 rows and columns and A has 64 rows and 7
columns. Then H = (Atr | I) is 7-by-71 with a 7-row by 64-column Atr

and 7 by 7 identity I. [Note that the two identity matrices are rarely the
same size.] The correction step requires that one compare the result Hrtr

to the columns of H, which is clearly doable.

The book talks about “decoding with coset leaders”. This just means that
instead of comparing to the columns of H, we prepare a table where you
can look up Hrtr and find the error position. The reason for the term
“coset” is that errors correspond to cosets of the code. If C is the group
code, received words with 1-bit errors are in one of the cosets ej + C.

Of course, this scheme corrects only one-bit errors, probably not enough
for reliable transmission of 64 bits at a time.

Setting up one that corrects
more errors is beyond the scope of this course.

15 / 15

If we need only one-bit error correction it can be shown that the number
of bits to add to m-bit messages is a little more than log2m. For example,
64-bit messages need add only 7 bits. Then G = (I | A) has 64 rows and
71 columns where I has 64 rows and columns and A has 64 rows and 7
columns. Then H = (Atr | I) is 7-by-71 with a 7-row by 64-column Atr

and 7 by 7 identity I. [Note that the two identity matrices are rarely the
same size.] The correction step requires that one compare the result Hrtr

to the columns of H, which is clearly doable.

The book talks about “decoding with coset leaders”. This just means that
instead of comparing to the columns of H, we prepare a table where you
can look up Hrtr and find the error position. The reason for the term
“coset” is that errors correspond to cosets of the code. If C is the group
code, received words with 1-bit errors are in one of the cosets ej + C.

Of course, this scheme corrects only one-bit errors, probably not enough
for reliable transmission of 64 bits at a time. Setting up one that corrects
more errors is beyond the scope of this course.

15 / 15

