Introduction to Coding Theory

Daniel H. Luecking
MASC

November 8, 2023

1/13

What is coding theory

2/13

What is coding theory

Coding theory is about sending information as rapidly and accurately as
possible. We will not cover ‘rapidly’, which deals with the compression of
data, but only introduce some concepts related to accurately transmitting
data.

2/13

What is coding theory

Coding theory is about sending information as rapidly and accurately as
possible. We will not cover ‘rapidly’, which deals with the compression of
data, but only introduce some concepts related to accurately transmitting
data.

The theory recognizes that all transmission methods are imperfect and
that, for one reason or another, a stream of bits may accumulate errors: a
0 becoming a 1 or the reverse.

2/13

What is coding theory

Coding theory is about sending information as rapidly and accurately as
possible. We will not cover ‘rapidly’, which deals with the compression of
data, but only introduce some concepts related to accurately transmitting
data.

The theory recognizes that all transmission methods are imperfect and
that, for one reason or another, a stream of bits may accumulate errors: a
0 becoming a 1 or the reverse. Detection of errors has been around since
before computers: The ASCII-7 code was originally for sending messages
to teletype machines.

2/13

What is coding theory

Coding theory is about sending information as rapidly and accurately as
possible. We will not cover ‘rapidly’, which deals with the compression of
data, but only introduce some concepts related to accurately transmitting
data.

The theory recognizes that all transmission methods are imperfect and
that, for one reason or another, a stream of bits may accumulate errors: a
0 becoming a 1 or the reverse. Detection of errors has been around since
before computers: The ASCII-7 code was originally for sending messages
to teletype machines. Seven bits were used to represent 128 different
characters or functions. If even one bit was wrong the wrong letter would
be printed or a newline or pagebreak could appear in the middle of a word.

2/13

What is coding theory

Coding theory is about sending information as rapidly and accurately as
possible. We will not cover ‘rapidly’, which deals with the compression of
data, but only introduce some concepts related to accurately transmitting
data.

The theory recognizes that all transmission methods are imperfect and
that, for one reason or another, a stream of bits may accumulate errors: a
0 becoming a 1 or the reverse. Detection of errors has been around since
before computers: The ASCII-7 code was originally for sending messages
to teletype machines. Seven bits were used to represent 128 different
characters or functions. If even one bit was wrong the wrong letter would
be printed or a newline or pagebreak could appear in the middle of a word.

To detect these errors ‘parity schemes’ were used. Instead of 7 bits per
character, 8 bits could be sent, with an extra bit added to make the total
number of 1's in the string even.

2/13

Even-parity error detection

For example, to code an ‘A’, the ASCII code has two 1's so we would add
a 0 (typically at the left end, as in the example below) and transmit that
8-bit string.

3/13

Even-parity error detection

For example, to code an ‘A’, the ASCII code has two 1's so we would add
a 0 (typically at the left end, as in the example below) and transmit that
8-bit string. While a 'C’ has three 1's so we would add a 1.

3/13

Even-parity error detection

For example, to code an ‘A’, the ASCII code has two 1's so we would add
a 0 (typically at the left end, as in the example below) and transmit that
8-bit string. While a 'C’ has three 1's so we would add a 1. That is,

A4 (1000001) 2™ (0100 0001)

¢ 29" (1000011) 2™ (1100 0011)

In both cases the new code has an even number of 1s.

3/13

Even-parity error detection

For example, to code an ‘A’, the ASCII code has two 1's so we would add
a 0 (typically at the left end, as in the example below) and transmit that
8-bit string. While a 'C’ has three 1's so we would add a 1. That is,

/1ASC“(1000001) P21 (0100 0001)

ASC|I
— (

¢ 5" (1000011) P (1100 0011)

In both cases the new code has an even number of 1s. If an 8-bit string
arrives with an odd number of 1s we know that an error has occurred in at
least one bit.

3/13

Even-parity error detection

For example, to code an ‘A’, the ASCII code has two 1's so we would add
a 0 (typically at the left end, as in the example below) and transmit that
8-bit string. While a 'C’ has three 1's so we would add a 1. That is,

A4 (1000001) 2™ (0100 0001)

¢ 29" (1000011) 2™ (1100 0011)

In both cases the new code has an even number of 1s. If an 8-bit string
arrives with an odd number of 1s we know that an error has occurred in at
least one bit. We don’t know which bit has changed, but we know not to
trust the data and perhaps can ask for it to be sent again.

3/13

Even-parity error detection

For example, to code an ‘A’, the ASCII code has two 1's so we would add
a 0 (typically at the left end, as in the example below) and transmit that
8-bit string. While a 'C’ has three 1's so we would add a 1. That is,

A4 (1000001) 2™ (0100 0001)

¢ 29" (1000011) 2™ (1100 0011)

In both cases the new code has an even number of 1s. If an 8-bit string
arrives with an odd number of 1s we know that an error has occurred in at
least one bit. We don’t know which bit has changed, but we know not to
trust the data and perhaps can ask for it to be sent again.

An example of an error-correction code is the following: send each bit
three times.

3/13

Even-parity error detection

For example, to code an ‘A’, the ASCII code has two 1's so we would add
a 0 (typically at the left end, as in the example below) and transmit that
8-bit string. While a 'C’ has three 1's so we would add a 1. That is,

/1ASC“(1000001) P21 (0100 0001)

ASC|I
— (

¢ 5" (1000011) P (1100 0011)

In both cases the new code has an even number of 1s. If an 8-bit string
arrives with an odd number of 1s we know that an error has occurred in at
least one bit. We don’t know which bit has changed, but we know not to
trust the data and perhaps can ask for it to be sent again.

An example of an error-correction code is the following: send each bit
three times. Instead of sending the actual data like 1001 ..., send
111000000111 If a single bit is changed (say a 111 becomes 101) we
know not only that there is an error, but where it is.

3/13

The probability of error

Adding extra bits lengthens a message and so actually adds more
opportunities for errors.

4/13

The probability of error

Adding extra bits lengthens a message and so actually adds more
opportunities for errors. We should be sure not to lengthen the message so
much as to increase the likelihood of error beyond our ability to correct it..

4/13

The probability of error

Adding extra bits lengthens a message and so actually adds more
opportunities for errors. We should be sure not to lengthen the message so
much as to increase the likelihood of error beyond our ability to correct it..

In the following calculations p is the probability of error for 1 bit.

4/13

The probability of error

Adding extra bits lengthens a message and so actually adds more
opportunities for errors. We should be sure not to lengthen the message so
much as to increase the likelihood of error beyond our ability to correct it..

In the following calculations p is the probability of error for 1 bit. We
assume that

1. p<1/2

4/13

The probability of error

Adding extra bits lengthens a message and so actually adds more
opportunities for errors. We should be sure not to lengthen the message so
much as to increase the likelihood of error beyond our ability to correct it..

In the following calculations p is the probability of error for 1 bit. We
assume that

1. p<1/2

2. the likelihood of a change in a bit does not depend on whether it is a
Ooral,

4/13

The probability of error

Adding extra bits lengthens a message and so actually adds more
opportunities for errors. We should be sure not to lengthen the message so
much as to increase the likelihood of error beyond our ability to correct it..

In the following calculations p is the probability of error for 1 bit. We
assume that
1. p<1/2,

2. the likelihood of a change in a bit does not depend on whether it is a
Ooral,

3. the likelihood of a change in a bit does not depend on what happens
to other bits around it.

Example: suppose we want to send 3 bits of information, and appending
another 3 bits gives us the ability to correct any one bit of the 6. Is this
better?

4/13

The probability of error

Adding extra bits lengthens a message and so actually adds more
opportunities for errors. We should be sure not to lengthen the message so
much as to increase the likelihood of error beyond our ability to correct it..

In the following calculations p is the probability of error for 1 bit. We
assume that

1. p<1/2

2. the likelihood of a change in a bit does not depend on whether it is a
Ooral,

3. the likelihood of a change in a bit does not depend on what happens
to other bits around it.

Example: suppose we want to send 3 bits of information, and appending
another 3 bits gives us the ability to correct any one bit of the 6. Is this
better?

If we send only the 3 bits, the probability that all bits are correct is
(1-p)*.

4/13

Basic principles

If we send 6 bits, with the ability to correct any 1-bit error, the correct
message gets through if there are no errors (probability (1 — p)%) or one
error (probability 6p(1 — p)?).

5/13

Basic principles

If we send 6 bits, with the ability to correct any 1-bit error, the correct
message gets through if there are no errors (probability (1 — p)%) or one
error (probability 6p(1 — p)®). So we need

(1—p)8 +6p(1 —p)® > (1 — p)3, which is true if p < 0.44.

5/13

Basic principles

If we send 6 bits, with the ability to correct any 1-bit error, the correct
message gets through if there are no errors (probability (1 — p)%) or one
error (probability 6p(1 — p)®). So we need

(1—p)8 +6p(1 —p)® > (1 — p)3, which is true if p < 0.44.

In more realistic problems we send much larger chunks of information and
require much more error correcting ability, but there is a basic theorem
that for any p < 1/2 there is some error-correcting scheme that
approaches perfect reliability.

5/13

Basic principles

If we send 6 bits, with the ability to correct any 1-bit error, the correct
message gets through if there are no errors (probability (1 — p)%) or one
error (probability 6p(1 — p)®). So we need

(1—p)8 +6p(1 —p)® > (1 — p)3, which is true if p < 0.44.

In more realistic problems we send much larger chunks of information and
require much more error correcting ability, but there is a basic theorem
that for any p < 1/2 there is some error-correcting scheme that
approaches perfect reliability.

All error correction schemes have the following set-up. Messages are
broken into parts which are strings of bits with a chosen length m, that is,
elements of Z3'; these are called ‘words’.

5/13

Basic principles

If we send 6 bits, with the ability to correct any 1-bit error, the correct
message gets through if there are no errors (probability (1 — p)%) or one
error (probability 6p(1 — p)®). So we need

(1—p)8 +6p(1 —p)® > (1 — p)3, which is true if p < 0.44.

In more realistic problems we send much larger chunks of information and
require much more error correcting ability, but there is a basic theorem
that for any p < 1/2 there is some error-correcting scheme that
approaches perfect reliability.

All error correction schemes have the following set-up. Messages are
broken into parts which are strings of bits with a chosen length m, that is,
elements of Z3'; these are called ‘words’. Then extra bits are appended to
a message word w to produce a longer ‘code word’ ¢ in Z5 with n > m.

5/13

Basic principles

If we send 6 bits, with the ability to correct any 1-bit error, the correct
message gets through if there are no errors (probability (1 — p)%) or one
error (probability 6p(1 — p)®). So we need

(1—p)8 +6p(1 —p)® > (1 — p)3, which is true if p < 0.44.

In more realistic problems we send much larger chunks of information and
require much more error correcting ability, but there is a basic theorem
that for any p < 1/2 there is some error-correcting scheme that
approaches perfect reliability.

All error correction schemes have the following set-up. Messages are
broken into parts which are strings of bits with a chosen length m, that is,
elements of Z3'; these are called ‘words’. Then extra bits are appended to
a message word w to produce a longer ‘code word’ ¢ in Z5 with n > m.

The process for doing this is called ‘encoding’. The code word ¢ is sent
over a communication channel with possible errors introduced. Call the
result r (for ‘received word").

5/13

Then r is tested for errors and possibly corrected to get (hopefully) ¢ again.

6/13

Then r is tested for errors and possibly corrected to get (hopefully) ¢ again.

Finally, the extra bits are removed from ¢ (the decoding step) to obtain
the original message word w:

6/13

Then r is tested for errors and possibly corrected to get (hopefully) ¢ again.

Finally, the extra bits are removed from ¢ (the decoding step) to obtain
the original message word w:

encode send correct decode
— cC — r —> Cc —

7y — 7Ly — Ly — Ly — Ly

6/13

Then r is tested for errors and possibly corrected to get (hopefully) ¢ again.

Finally, the extra bits are removed from ¢ (the decoding step) to obtain
the original message word w:

encode send correct decode
— cC — r —> Cc —

7y — 7Ly — Ly — Ly — Ly

The basic principle for encoding is that the added bits in the encoding
process are obtained in a computable way which we might represent by
¢ = E(w) (FE for ‘encoding’).

6/13

Then r is tested for errors and possibly corrected to get (hopefully) ¢ again.

Finally, the extra bits are removed from ¢ (the decoding step) to obtain
the original message word w:

encode send correct decode
—c —=r —c —
7y — 7Ly — Ly — Ly — Ly
The basic principle for encoding is that the added bits in the encoding
process are obtained in a computable way which we might represent by

¢ = E(w) (FE for ‘encoding’). These are called ‘parity bits’ in analogy to
the ASCIIl example.

6/13

Then r is tested for errors and possibly corrected to get (hopefully) ¢ again.

Finally, the extra bits are removed from ¢ (the decoding step) to obtain
the original message word w:

encode send correct decode
— cC — r —> Cc —

7y — 7Ly — Ly — Ly — Ly

The basic principle for encoding is that the added bits in the encoding
process are obtained in a computable way which we might represent by
¢ = E(w) (FE for ‘encoding’). These are called ‘parity bits’ in analogy to
the ASCIIl example.

Then the set of all possible E(w) as w ranges through Z3" is called the
‘code’.

6/13

Then r is tested for errors and possibly corrected to get (hopefully) ¢ again.

Finally, the extra bits are removed from ¢ (the decoding step) to obtain
the original message word w:

encode send correct decode
— cC — r —> Cc —

7y — 7Ly — Ly — Ly — Ly

The basic principle for encoding is that the added bits in the encoding
process are obtained in a computable way which we might represent by
¢ = E(w) (FE for ‘encoding’). These are called ‘parity bits’ in analogy to
the ASCIIl example.

Then the set of all possible E(w) as w ranges through Z3" is called the
‘code’. So, a ‘code’ is just a set C of strings in Z5. It is not all of Z3
because C has only 2 elements, one for each w in Z5', while Z3 has 2"
elements and n > m.

6/13

Error detection works simply by checking whether the received word r
belongs to C. If 7 is not in C we know there was an error. If it is in C we
assume no error.

7/13

Error detection works simply by checking whether the received word r
belongs to C. If 7 is not in C we know there was an error. If it is in C we
assume no error. This assumption is valid only if we have designed C so
that the probability of an error changing one code word into another code
word is smaller that the probability of no error.

7/13

Error detection works simply by checking whether the received word r
belongs to C. If 7 is not in C we know there was an error. If it is in C we
assume no error. This assumption is valid only if we have designed C so
that the probability of an error changing one code word into another code
word is smaller that the probability of no error.

A simple error-correction example

7/13

Error detection works simply by checking whether the received word r
belongs to C. If 7 is not in C we know there was an error. If it is in C we
assume no error. This assumption is valid only if we have designed C so
that the probability of an error changing one code word into another code
word is smaller that the probability of no error.

A simple error-correction example

A good code C is designed so that every pair of words differ in a significant
number of places. That is, the probability of a code word becoming a
different code word must be small.

7/13

Error detection works simply by checking whether the received word r
belongs to C. If 7 is not in C we know there was an error. If it is in C we
assume no error. This assumption is valid only if we have designed C so
that the probability of an error changing one code word into another code
word is smaller that the probability of no error.

A simple error-correction example

A good code C is designed so that every pair of words differ in a significant
number of places. That is, the probability of a code word becoming a
different code word must be small.

The following code was produced by adding 3 bits to words in Z3 to
produce strings in Z$:

7/13

Error detection works simply by checking whether the received word r
belongs to C. If 7 is not in C we know there was an error. If it is in C we
assume no error. This assumption is valid only if we have designed C so
that the probability of an error changing one code word into another code
word is smaller that the probability of no error.

A simple error-correction example

A good code C is designed so that every pair of words differ in a significant
number of places. That is, the probability of a code word becoming a
different code word must be small.

The following code was produced by adding 3 bits to words in Z3 to
produce strings in Z$:

¢ = {(000000), (001 011), (010 110), (100 101),
(011101), (101 110), (110011), (111 000)}

7/13

In this example it takes at least 3 errors to turn any one of these into
another one.

8/13

In this example it takes at least 3 errors to turn any one of these into
another one. Assuming this, we have

1. Any changes to 1 or 2 bits is detectable as an error. (We say C has
2-bit error detection.)

8/13

In this example it takes at least 3 errors to turn any one of these into
another one. Assuming this, we have

1. Any changes to 1 or 2 bits is detectable as an error. (We say C has
2-bit error detection.)

2. An error in only one bit can be corrected. (We say C has 1-bit error
correction.)

8/13

In this example it takes at least 3 errors to turn any one of these into
another one. Assuming this, we have

1. Any changes to 1 or 2 bits is detectable as an error. (We say C has
2-bit error detection.)

2. An error in only one bit can be corrected. (We say C has 1-bit error
correction.)

This relies on multiple errors being less likely than one error. This is true
under conditions like one of the previous slides, and depends on p.

8/13

In this example it takes at least 3 errors to turn any one of these into
another one. Assuming this, we have

1. Any changes to 1 or 2 bits is detectable as an error. (We say C has
2-bit error detection.)

2. An error in only one bit can be corrected. (We say C has 1-bit error
correction.)

This relies on multiple errors being less likely than one error. This is true
under conditions like one of the previous slides, and depends on p.

Definition
The Hamming distance d(w,w’) between w and w' if the number of bits
that need to be changed to turn the word w into the word w'.

8/13

Suppose two code words ¢ and ¢ have d(c, ') = j for some positive
integer 7.

9/13

Suppose two code words ¢ and ¢ have d(c, ') = j for some positive
integer j. If is received and d(c,r) < j/2 then also d(c/,r) > j/2, and
so r is more likely to have been sent as ¢ than as (.

9/13

Suppose two code words ¢ and ¢ have d(c, ') = j for some positive
integer j. If is received and d(c,r) < j/2 then also d(c/,r) > j/2, and
so 7 is more likely to have been sent as ¢ than as ¢’. (Fewer errors are
more likely if p is small).

9/13

Suppose two code words ¢ and ¢ have d(c, ') = j for some positive
integer j. If is received and d(c,r) < j/2 then also d(c/,r) > j/2, and
so 7 is more likely to have been sent as ¢ than as ¢’. (Fewer errors are
more likely if p is small).

A key parameter for any code C is the minimum distance between code
words, which we call d.

9/13

Suppose two code words ¢ and ¢ have d(c, ') = j for some positive
integer j. If is received and d(c,r) < j/2 then also d(c/,r) > j/2, and
so 7 is more likely to have been sent as ¢ than as ¢’. (Fewer errors are
more likely if p is small).

A key parameter for any code C is the minimum distance between code
words, which we call d. It has the property that any error in k bits can be
detected if k < d and can be corrected if 2k < d.

9/13

Suppose two code words ¢ and ¢ have d(c, ') = j for some positive
integer j. If is received and d(c,r) < j/2 then also d(c/,r) > j/2, and
so 7 is more likely to have been sent as ¢ than as ¢’. (Fewer errors are
more likely if p is small).

A key parameter for any code C is the minimum distance between code
words, which we call d. It has the property that any error in k bits can be
detected if k < d and can be corrected if 2k < d.

For example, if the minimum distance d is 6, then any errors in 5 bits or
fewer are detectable and any errors in 2 bits or fewer is correctable.

9/13

Suppose two code words ¢ and ¢ have d(c, ') = j for some positive
integer j. If is received and d(c,r) < j/2 then also d(c/,r) > j/2, and
so 7 is more likely to have been sent as ¢ than as ¢’. (Fewer errors are
more likely if p is small).

A key parameter for any code C is the minimum distance between code
words, which we call d. It has the property that any error in k bits can be
detected if k < d and can be corrected if 2k < d.

For example, if the minimum distance d is 6, then any errors in 5 bits or
fewer are detectable and any errors in 2 bits or fewer is correctable. But
3-bit errors could land " half-way between” code words and correcting to
the nearest one is impossible.

9/13

Suppose two code words ¢ and ¢ have d(c, ') = j for some positive
integer j. If is received and d(c,r) < j/2 then also d(c/,r) > j/2, and
so 7 is more likely to have been sent as ¢ than as ¢’. (Fewer errors are
more likely if p is small).

A key parameter for any code C is the minimum distance between code
words, which we call d. It has the property that any error in k bits can be
detected if k < d and can be corrected if 2k < d.

For example, if the minimum distance d is 6, then any errors in 5 bits or
fewer are detectable and any errors in 2 bits or fewer is correctable. But
3-bit errors could land " half-way between” code words and correcting to
the nearest one is impossible.

Our previous 6-bit example has d = 3 which has 2-bit detectability and
1-bit correctability.

9/13

How does group theory get involved? It does so because Z3 is a group
under bit-wise addition mod 2, and an error can be viewed as addition.

10/13

How does group theory get involved? It does so because Z3 is a group
under bit-wise addition mod 2, and an error can be viewed as addition.

For example, suppose ¢ = (101 110) is a code word and e = (001 000).
Then ¢+ e = (100 110), which is ¢ changed in third position from a 1 to a
0=1+1mod 2.

10/13

How does group theory get involved? It does so because Z3 is a group
under bit-wise addition mod 2, and an error can be viewed as addition.

For example, suppose ¢ = (101 110) is a code word and e = (001 000).
Then ¢+ e = (100 110), which is ¢ changed in third position from a 1 to a
0 =141 mod 2. Also ¢+ (010000) changes the 0 in second position to 1.

10/13

How does group theory get involved? It does so because Z3 is a group
under bit-wise addition mod 2, and an error can be viewed as addition.

For example, suppose ¢ = (101 110) is a code word and e = (001 000).
Then ¢+ e = (100 110), which is ¢ changed in third position from a 1 to a
0 =141 mod 2. Also ¢+ (010000) changes the 0 in second position to 1.

If e has more than a single 1, that would correspond to more errors. We
use this concept in conjunction with a formula for the Hamming distance.

10/13

How does group theory get involved? It does so because Z3 is a group
under bit-wise addition mod 2, and an error can be viewed as addition.

For example, suppose ¢ = (101 110) is a code word and e = (001 000).
Then ¢+ e = (100 110), which is ¢ changed in third position from a 1 to a
0 =141 mod 2. Also ¢+ (010000) changes the 0 in second position to 1.

If e has more than a single 1, that would correspond to more errors. We
use this concept in conjunction with a formula for the Hamming distance.

Definition
The weight of a word is the number of 1s in its string.

10/13

How does group theory get involved? It does so because Z3 is a group
under bit-wise addition mod 2, and an error can be viewed as addition.

For example, suppose ¢ = (101 110) is a code word and e = (001 000).
Then ¢+ e = (100 110), which is ¢ changed in third position from a 1 to a
0 =141 mod 2. Also ¢+ (010000) changes the 0 in second position to 1.

If e has more than a single 1, that would correspond to more errors. We
use this concept in conjunction with a formula for the Hamming distance.

Definition
The weight of a word is the number of 1s in its string.

For example the weight of the above ¢ = (101 110) is 4. We use wt(w) for
the weight of w.

10/13

How does group theory get involved? It does so because Z3 is a group
under bit-wise addition mod 2, and an error can be viewed as addition.

For example, suppose ¢ = (101 110) is a code word and e = (001 000).
Then ¢+ e = (100 110), which is ¢ changed in third position from a 1 to a
0 =141 mod 2. Also ¢+ (010000) changes the 0 in second position to 1.

If e has more than a single 1, that would correspond to more errors. We
use this concept in conjunction with a formula for the Hamming distance.

Definition
The weight of a word is the number of 1s in its string.

For example the weight of the above ¢ = (101 110) is 4. We use wt(w) for
the weight of w.

Note that if we add w and w’, then w + w’ has a 1 in those positions
where w and w’ are different and a 0 in positions where they are the same.

10/13

Thus the distance d(w, w’) is the number of places w + w’ has a 1:

d(w,w") = wt(w + w') (bitwise addition mod 2)

11/13

Thus the distance d(w, w’) is the number of places w + w’ has a 1:

d(w,w") = wt(w + w') (bitwise addition mod 2)

If a code C is a subgroup of Z% we call it a group code.

11/13

Thus the distance d(w, w’) is the number of places w + w’ has a 1:

d(w,w") = wt(w + w') (bitwise addition mod 2)

Definition
If a code C is a subgroup of Z% we call it a group code.

Since a group code must be closed under addition, d(c, ') = wt(c+ ¢) is
the weight of another code word.

11/13

Thus the distance d(w, w’) is the number of places w + w’ has a 1:

d(w,w") = wt(w + w') (bitwise addition mod 2)

Definition
If a code C is a subgroup of Z% we call it a group code.

Since a group code must be closed under addition, d(c, ') = wt(c+ ¢) is
the weight of another code word. So, we can determine the minimum
distance between code words by determining the weight of all words in C
(except the zero string) and taking the smallest.

11/13

Thus the distance d(w, w’) is the number of places w + w’ has a 1:

d(w,w") = wt(w + w') (bitwise addition mod 2)

Definition
If a code C is a subgroup of Z% we call it a group code.

Since a group code must be closed under addition, d(c, ') = wt(c+ ¢) is
the weight of another code word. So, we can determine the minimum
distance between code words by determining the weight of all words in C
(except the zero string) and taking the smallest.

Theorem

For a group code, the minimum distance between code words equals the
minimum weight of the nonzero code words.

11/13

Take the earlier example:

¢ = {(000000), (001 011), (010 110), (100 101),
(011101), (101 110), (110011), (111000)}

12/13

Take the earlier example:

¢ = {(000000), (001 011), (010 110), (100 101),
(011101), (101 110), (110011), (111000)}

| created this to be a group code so, since we get the following 7 weights
for the nonzero strings: 3,3,3,4,4,4,3, the minimum distance is d = 3.

12/13

Take the earlier example:

¢ = {(000000), (001 011), (010 110), (100 101),
(011101), (101 110), (110011), (111000)}

| created this to be a group code so, since we get the following 7 weights
for the nonzero strings: 3,3,3,4,4,4,3, the minimum distance is d = 3.

This means we have 2-bit error detection and 1-bit error correction.

12/13

Take the earlier example:

¢ = {(000000), (001 011), (010 110), (100 101),
(011101), (101 110), (110011), (111000)}

| created this to be a group code so, since we get the following 7 weights
for the nonzero strings: 3,3,3,4,4,4,3, the minimum distance is d = 3.

This means we have 2-bit error detection and 1-bit error correction.

A more important advantage of a group codes is this: determining if r is
in the code C, is an easy (for a computer) calculation that both detects
and corrects errors (when possible).

12/13

Take the earlier example:

¢ = {(000000), (001 011), (010 110), (100 101),
(011101), (101 110), (110011), (111000)}

| created this to be a group code so, since we get the following 7 weights
for the nonzero strings: 3,3,3,4,4,4,3, the minimum distance is d = 3.

This means we have 2-bit error detection and 1-bit error correction.

A more important advantage of a group codes is this: determining if r is
in the code C, is an easy (for a computer) calculation that both detects
and corrects errors (when possible). We don't have to do an exhaustive
search of C (impossible if C has 2™ elements with say m > 100).

Practical considerations

In typical applications we want to send significantly sized code words, for
example n = 256 or higher.

12/13

Take the earlier example:

C = {(000000), (001 011),(010110), (100101),
(011101), (101110), (110011),(111000)}
| created this to be a group code so, since we get the following 7 weights
for the nonzero strings: 3,3,3,4,4,4,3, the minimum distance is d = 3.
This means we have 2-bit error detection and 1-bit error correction.

A more important advantage of a group codes is this: determining if r is
in the code C, is an easy (for a computer) calculation that both detects
and corrects errors (when possible). We don't have to do an exhaustive
search of C (impossible if C has 2™ elements with say m > 100).

Practical considerations

In typical applications we want to send significantly sized code words, for
example n = 256 or higher. Our earlier statements like “more errors are
less likely than fewer errors” are only true if p is less than around 1/n.

12/13

Take the earlier example:

¢ = {(000000), (001 011), (010 110), (100 101),
(011101), (101 110), (110011), (111000)}

| created this to be a group code so, since we get the following 7 weights
for the nonzero strings: 3,3,3,4,4,4,3, the minimum distance is d = 3.

This means we have 2-bit error detection and 1-bit error correction.

A more important advantage of a group codes is this: determining if r is
in the code C, is an easy (for a computer) calculation that both detects
and corrects errors (when possible). We don't have to do an exhaustive
search of C (impossible if C has 2™ elements with say m > 100).

Practical considerations

In typical applications we want to send significantly sized code words, for
example n = 256 or higher. Our earlier statements like “more errors are
less likely than fewer errors” are only true if p is less than around 1/n. This
might typically be true, but transmission methods may have to monitor

the reliability of the communication channel and estimate p in real time.
12/13

Some of the probability formulas | used earlier assumed that an error in a
bit does not depend on what happens in other bits.

13/13

Some of the probability formulas | used earlier assumed that an error in a
bit does not depend on what happens in other bits. This is the most likely
of the assumptions to not be true in real life.

13/13

Some of the probability formulas | used earlier assumed that an error in a
bit does not depend on what happens in other bits. This is the most likely
of the assumptions to not be true in real life.

Errors caused by external events (e.g., voltage spikes) are typically “burst
errors”: several bits in a row may become essentially random, so an error
in one bit makes it more likely that nearby bits are wrong.

13/13

Some of the probability formulas | used earlier assumed that an error in a
bit does not depend on what happens in other bits. This is the most likely
of the assumptions to not be true in real life.

Errors caused by external events (e.g., voltage spikes) are typically “burst
errors”: several bits in a row may become essentially random, so an error
in one bit makes it more likely that nearby bits are wrong.

This doesn’t have to affect the probability analysis: the encoding method
can include scrambling the bits, then close-together errors become far
apart errors when the message is unscrambled.

13/13

Some of the probability formulas | used earlier assumed that an error in a
bit does not depend on what happens in other bits. This is the most likely
of the assumptions to not be true in real life.

Errors caused by external events (e.g., voltage spikes) are typically “burst
errors”: several bits in a row may become essentially random, so an error
in one bit makes it more likely that nearby bits are wrong.

This doesn’t have to affect the probability analysis: the encoding method
can include scrambling the bits, then close-together errors become far
apart errors when the message is unscrambled.

Modern error correction codes use methods that model messages not as
elements of Z7' but as elements of FJi where Fy is a ring with 2k
elements that has special properties.

13/13

Some of the probability formulas | used earlier assumed that an error in a
bit does not depend on what happens in other bits. This is the most likely
of the assumptions to not be true in real life.

Errors caused by external events (e.g., voltage spikes) are typically “burst
errors”: several bits in a row may become essentially random, so an error
in one bit makes it more likely that nearby bits are wrong.

This doesn’t have to affect the probability analysis: the encoding method
can include scrambling the bits, then close-together errors become far
apart errors when the message is unscrambled.

Modern error correction codes use methods that model messages not as
elements of Z7' but as elements of FJi where Fy is a ring with 2k
elements that has special properties.

In these schemes, any errors within k consecutive bits are as correctable as
a one bit error. This makes burst errors manageable.

13/13

