
Lagrange’s Theorem,
Cryptography

Daniel H. Luecking
MASC

November 4, 2022

1 / 9

Application of groups: RSA cryptography

In the distant past (say the 1970’s) encrypted communication required the
two parties to meet and determine the encryption codes.

This is impractical today so a public-key method is used: If I want to
receive secure messages, I publish an encryption key which others can use
to encrypt messages, but I keep secret the decryption key .

The Rivest-Shamir-Adleman (RSA) system amounts to the following (I am
simplifying). A message m, being just 0s and 1s, is interpreted as a
number in Zn for some large n (or sequence of numbers if m ≥ n).

I make the number n public as well as a certain number e < n. Then m is
encrypted by computing c = me mod n and c is what is sent to me.

I keep another number d < n secret. It has the property that
cd mod n = med mod n = m and I then have the message m.

The mathematics behind this is the subject of this lecture. It is possible to
deduce d from n and e, but only if n can be factored. This is a well-known
difficult problem.

2 / 9

Application of groups: RSA cryptography

In the distant past (say the 1970’s) encrypted communication required the
two parties to meet and determine the encryption codes.

This is impractical today so a public-key method is used: If I want to
receive secure messages, I publish an encryption key which others can use
to encrypt messages, but I keep secret the decryption key .

The Rivest-Shamir-Adleman (RSA) system amounts to the following (I am
simplifying). A message m, being just 0s and 1s, is interpreted as a
number in Zn for some large n (or sequence of numbers if m ≥ n).

I make the number n public as well as a certain number e < n. Then m is
encrypted by computing c = me mod n and c is what is sent to me.

I keep another number d < n secret. It has the property that
cd mod n = med mod n = m and I then have the message m.

The mathematics behind this is the subject of this lecture. It is possible to
deduce d from n and e, but only if n can be factored. This is a well-known
difficult problem.

2 / 9

Application of groups: RSA cryptography

In the distant past (say the 1970’s) encrypted communication required the
two parties to meet and determine the encryption codes.

This is impractical today so a public-key method is used: If I want to
receive secure messages, I publish an encryption key which others can use
to encrypt messages, but I keep secret the decryption key .

The Rivest-Shamir-Adleman (RSA) system amounts to the following (I am
simplifying). A message m, being just 0s and 1s, is interpreted as a
number in Zn for some large n (or sequence of numbers if m ≥ n).

I make the number n public as well as a certain number e < n. Then m is
encrypted by computing c = me mod n and c is what is sent to me.

I keep another number d < n secret. It has the property that
cd mod n = med mod n = m and I then have the message m.

The mathematics behind this is the subject of this lecture. It is possible to
deduce d from n and e, but only if n can be factored. This is a well-known
difficult problem.

2 / 9

Application of groups: RSA cryptography

In the distant past (say the 1970’s) encrypted communication required the
two parties to meet and determine the encryption codes.

This is impractical today so a public-key method is used: If I want to
receive secure messages, I publish an encryption key which others can use
to encrypt messages, but I keep secret the decryption key .

The Rivest-Shamir-Adleman (RSA) system amounts to the following (I am
simplifying). A message m, being just 0s and 1s, is interpreted as a
number in Zn for some large n (or sequence of numbers if m ≥ n).

I make the number n public as well as a certain number e < n. Then m is
encrypted by computing c = me mod n and c is what is sent to me.

I keep another number d < n secret. It has the property that
cd mod n = med mod n = m and I then have the message m.

The mathematics behind this is the subject of this lecture. It is possible to
deduce d from n and e, but only if n can be factored. This is a well-known
difficult problem.

2 / 9

Application of groups: RSA cryptography

In the distant past (say the 1970’s) encrypted communication required the
two parties to meet and determine the encryption codes.

This is impractical today so a public-key method is used: If I want to
receive secure messages, I publish an encryption key which others can use
to encrypt messages, but I keep secret the decryption key .

The Rivest-Shamir-Adleman (RSA) system amounts to the following (I am
simplifying). A message m, being just 0s and 1s, is interpreted as a
number in Zn for some large n (or sequence of numbers if m ≥ n).

I make the number n public as well as a certain number e < n. Then m is
encrypted by computing c = me mod n and c is what is sent to me.

I keep another number d < n secret. It has the property that
cd mod n = med mod n = m and I then have the message m.

The mathematics behind this is the subject of this lecture. It is possible to
deduce d from n and e, but only if n can be factored. This is a well-known
difficult problem.

2 / 9

Application of groups: RSA cryptography

In the distant past (say the 1970’s) encrypted communication required the
two parties to meet and determine the encryption codes.

This is impractical today so a public-key method is used: If I want to
receive secure messages, I publish an encryption key which others can use
to encrypt messages, but I keep secret the decryption key .

The Rivest-Shamir-Adleman (RSA) system amounts to the following (I am
simplifying). A message m, being just 0s and 1s, is interpreted as a
number in Zn for some large n (or sequence of numbers if m ≥ n).

I make the number n public as well as a certain number e < n. Then m is
encrypted by computing c = me mod n and c is what is sent to me.

I keep another number d < n secret. It has the property that
cd mod n = med mod n = m and I then have the message m.

The mathematics behind this is the subject of this lecture. It is possible to
deduce d from n and e, but only if n can be factored. This is a well-known
difficult problem.

2 / 9

Application of groups: RSA cryptography

In the distant past (say the 1970’s) encrypted communication required the
two parties to meet and determine the encryption codes.

This is impractical today so a public-key method is used: If I want to
receive secure messages, I publish an encryption key which others can use
to encrypt messages, but I keep secret the decryption key .

The Rivest-Shamir-Adleman (RSA) system amounts to the following (I am
simplifying). A message m, being just 0s and 1s, is interpreted as a
number in Zn for some large n (or sequence of numbers if m ≥ n).

I make the number n public as well as a certain number e < n. Then m is
encrypted by computing c = me mod n and c is what is sent to me.

I keep another number d < n secret. It has the property that
cd mod n = med mod n = m and I then have the message m.

The mathematics behind this is the subject of this lecture. It is possible to
deduce d from n and e, but only if n can be factored. This is a well-known
difficult problem.

2 / 9

Raising to powers

While modern computers can do millions of multiplications per second,
security requires the chosen n to have thousands of bits and e and d are
required to have dozens of bits.

We’re talking numbers larger than a
million million million or so. So one needs an efficient method to take
powers.

There is a method that relies on the observation that raising to the 2k

power requires only k multiplications: m2k is obtained by squaring m to
get m2 then squaring that to get m22 then squaring that to get m23 , etc.

Since e is a sum of powers of 2 (at most as many as the number of bits in
e), an algorithm can be use that produces me in about twice as many
steps as there are bits in e. Thus one needs only dozens of multiplications.
Also, since we work in Zn the numbers never get larger than n.

The existence of the e and d that satisfy med mod n = m requires n to
have a special form: it must be a product of distinct primes. These primes
must be large, for security, so the system specifies n = pq for two large
primes p and q.

3 / 9

Raising to powers

While modern computers can do millions of multiplications per second,
security requires the chosen n to have thousands of bits and e and d are
required to have dozens of bits. We’re talking numbers larger than a
million million million or so. So one needs an efficient method to take
powers.

There is a method that relies on the observation that raising to the 2k

power requires only k multiplications: m2k is obtained by squaring m to
get m2 then squaring that to get m22 then squaring that to get m23 , etc.

Since e is a sum of powers of 2 (at most as many as the number of bits in
e), an algorithm can be use that produces me in about twice as many
steps as there are bits in e. Thus one needs only dozens of multiplications.
Also, since we work in Zn the numbers never get larger than n.

The existence of the e and d that satisfy med mod n = m requires n to
have a special form: it must be a product of distinct primes. These primes
must be large, for security, so the system specifies n = pq for two large
primes p and q.

3 / 9

Raising to powers

While modern computers can do millions of multiplications per second,
security requires the chosen n to have thousands of bits and e and d are
required to have dozens of bits. We’re talking numbers larger than a
million million million or so. So one needs an efficient method to take
powers.

There is a method that relies on the observation that raising to the 2k

power requires only k multiplications: m2k is obtained by squaring m to
get m2 then squaring that to get m22 then squaring that to get m23 , etc.

Since e is a sum of powers of 2 (at most as many as the number of bits in
e), an algorithm can be use that produces me in about twice as many
steps as there are bits in e. Thus one needs only dozens of multiplications.
Also, since we work in Zn the numbers never get larger than n.

The existence of the e and d that satisfy med mod n = m requires n to
have a special form: it must be a product of distinct primes. These primes
must be large, for security, so the system specifies n = pq for two large
primes p and q.

3 / 9

Raising to powers

While modern computers can do millions of multiplications per second,
security requires the chosen n to have thousands of bits and e and d are
required to have dozens of bits. We’re talking numbers larger than a
million million million or so. So one needs an efficient method to take
powers.

There is a method that relies on the observation that raising to the 2k

power requires only k multiplications: m2k is obtained by squaring m to
get m2 then squaring that to get m22 then squaring that to get m23 , etc.

Since e is a sum of powers of 2 (at most as many as the number of bits in
e), an algorithm can be use that produces me in about twice as many
steps as there are bits in e.

Thus one needs only dozens of multiplications.
Also, since we work in Zn the numbers never get larger than n.

The existence of the e and d that satisfy med mod n = m requires n to
have a special form: it must be a product of distinct primes. These primes
must be large, for security, so the system specifies n = pq for two large
primes p and q.

3 / 9

Raising to powers

While modern computers can do millions of multiplications per second,
security requires the chosen n to have thousands of bits and e and d are
required to have dozens of bits. We’re talking numbers larger than a
million million million or so. So one needs an efficient method to take
powers.

There is a method that relies on the observation that raising to the 2k

power requires only k multiplications: m2k is obtained by squaring m to
get m2 then squaring that to get m22 then squaring that to get m23 , etc.

Since e is a sum of powers of 2 (at most as many as the number of bits in
e), an algorithm can be use that produces me in about twice as many
steps as there are bits in e. Thus one needs only dozens of multiplications.
Also, since we work in Zn the numbers never get larger than n.

The existence of the e and d that satisfy med mod n = m requires n to
have a special form: it must be a product of distinct primes. These primes
must be large, for security, so the system specifies n = pq for two large
primes p and q.

3 / 9

Raising to powers

While modern computers can do millions of multiplications per second,
security requires the chosen n to have thousands of bits and e and d are
required to have dozens of bits. We’re talking numbers larger than a
million million million or so. So one needs an efficient method to take
powers.

There is a method that relies on the observation that raising to the 2k

power requires only k multiplications: m2k is obtained by squaring m to
get m2 then squaring that to get m22 then squaring that to get m23 , etc.

Since e is a sum of powers of 2 (at most as many as the number of bits in
e), an algorithm can be use that produces me in about twice as many
steps as there are bits in e. Thus one needs only dozens of multiplications.
Also, since we work in Zn the numbers never get larger than n.

The existence of the e and d that satisfy med mod n = m requires n to
have a special form: it must be a product of distinct primes.

These primes
must be large, for security, so the system specifies n = pq for two large
primes p and q.

3 / 9

Raising to powers

While modern computers can do millions of multiplications per second,
security requires the chosen n to have thousands of bits and e and d are
required to have dozens of bits. We’re talking numbers larger than a
million million million or so. So one needs an efficient method to take
powers.

There is a method that relies on the observation that raising to the 2k

power requires only k multiplications: m2k is obtained by squaring m to
get m2 then squaring that to get m22 then squaring that to get m23 , etc.

Since e is a sum of powers of 2 (at most as many as the number of bits in
e), an algorithm can be use that produces me in about twice as many
steps as there are bits in e. Thus one needs only dozens of multiplications.
Also, since we work in Zn the numbers never get larger than n.

The existence of the e and d that satisfy med mod n = m requires n to
have a special form: it must be a product of distinct primes. These primes
must be large, for security, so the system specifies n = pq for two large
primes p and q.

3 / 9

The group of units

Recall that Lagrange’s theorem implies that if G is a group and a is in G
then a|G| equals the group’s identity.

If we consider this in u(Zn) which
has size ϕ(n) we conclude that if a is a unit in Zn we have
aϕ(n) mod n = 1.

If p is a prime, then every element of Zp is a unit except 0 and
ϕ(p) = p− 1 so ap−1 mod p = 1 for all a ̸= 0 in Zp. If we raise that to a
power we also get ak(p−1) = 1. If we multiply that by a we get

akϕ(p)+1 mod p = a for any integer k.

This continues to hold when a = 0 so it is true for all a in Zp.

If we replace p by any n, the above may not be true if a is not a unit and
not 0, but if n is a product of distinct primes, for example if n = pq, where
p and q are different primes, then it is true. That is, for any a in Zn with
n = pq

akϕ(n)+1 mod n = a, for any integer k.

4 / 9

The group of units

Recall that Lagrange’s theorem implies that if G is a group and a is in G
then a|G| equals the group’s identity. If we consider this in u(Zn) which
has size ϕ(n) we conclude that if a is a unit in Zn we have
aϕ(n) mod n = 1.

If p is a prime, then every element of Zp is a unit except 0 and
ϕ(p) = p− 1 so ap−1 mod p = 1 for all a ̸= 0 in Zp. If we raise that to a
power we also get ak(p−1) = 1. If we multiply that by a we get

akϕ(p)+1 mod p = a for any integer k.

This continues to hold when a = 0 so it is true for all a in Zp.

If we replace p by any n, the above may not be true if a is not a unit and
not 0, but if n is a product of distinct primes, for example if n = pq, where
p and q are different primes, then it is true. That is, for any a in Zn with
n = pq

akϕ(n)+1 mod n = a, for any integer k.

4 / 9

The group of units

Recall that Lagrange’s theorem implies that if G is a group and a is in G
then a|G| equals the group’s identity. If we consider this in u(Zn) which
has size ϕ(n) we conclude that if a is a unit in Zn we have
aϕ(n) mod n = 1.

If p is a prime, then every element of Zp is a unit except 0 and
ϕ(p) = p− 1 so ap−1 mod p = 1 for all a ̸= 0 in Zp.

If we raise that to a
power we also get ak(p−1) = 1. If we multiply that by a we get

akϕ(p)+1 mod p = a for any integer k.

This continues to hold when a = 0 so it is true for all a in Zp.

If we replace p by any n, the above may not be true if a is not a unit and
not 0, but if n is a product of distinct primes, for example if n = pq, where
p and q are different primes, then it is true. That is, for any a in Zn with
n = pq

akϕ(n)+1 mod n = a, for any integer k.

4 / 9

The group of units

Recall that Lagrange’s theorem implies that if G is a group and a is in G
then a|G| equals the group’s identity. If we consider this in u(Zn) which
has size ϕ(n) we conclude that if a is a unit in Zn we have
aϕ(n) mod n = 1.

If p is a prime, then every element of Zp is a unit except 0 and
ϕ(p) = p− 1 so ap−1 mod p = 1 for all a ̸= 0 in Zp. If we raise that to a
power we also get ak(p−1) = 1. If we multiply that by a we get

akϕ(p)+1 mod p = a for any integer k.

This continues to hold when a = 0 so it is true for all a in Zp.

If we replace p by any n, the above may not be true if a is not a unit and
not 0, but if n is a product of distinct primes, for example if n = pq, where
p and q are different primes, then it is true. That is, for any a in Zn with
n = pq

akϕ(n)+1 mod n = a, for any integer k.

4 / 9

The group of units

Recall that Lagrange’s theorem implies that if G is a group and a is in G
then a|G| equals the group’s identity. If we consider this in u(Zn) which
has size ϕ(n) we conclude that if a is a unit in Zn we have
aϕ(n) mod n = 1.

If p is a prime, then every element of Zp is a unit except 0 and
ϕ(p) = p− 1 so ap−1 mod p = 1 for all a ̸= 0 in Zp. If we raise that to a
power we also get ak(p−1) = 1. If we multiply that by a we get

akϕ(p)+1 mod p = a for any integer k.

This continues to hold when a = 0 so it is true for all a in Zp.

If we replace p by any n, the above may not be true if a is not a unit and
not 0, but if n is a product of distinct primes, for example if n = pq, where
p and q are different primes, then it is true.

That is, for any a in Zn with
n = pq

akϕ(n)+1 mod n = a, for any integer k.

4 / 9

The group of units

Recall that Lagrange’s theorem implies that if G is a group and a is in G
then a|G| equals the group’s identity. If we consider this in u(Zn) which
has size ϕ(n) we conclude that if a is a unit in Zn we have
aϕ(n) mod n = 1.

If p is a prime, then every element of Zp is a unit except 0 and
ϕ(p) = p− 1 so ap−1 mod p = 1 for all a ̸= 0 in Zp. If we raise that to a
power we also get ak(p−1) = 1. If we multiply that by a we get

akϕ(p)+1 mod p = a for any integer k.

This continues to hold when a = 0 so it is true for all a in Zp.

If we replace p by any n, the above may not be true if a is not a unit and
not 0, but if n is a product of distinct primes, for example if n = pq, where
p and q are different primes, then it is true. That is, for any a in Zn with
n = pq

akϕ(n)+1 mod n = a, for any integer k.

4 / 9

The Chinese Remainder Theorem

The reason for the last equation in Zpq is the Chinese Remainder Theorem:

Theorem

If n = pq where gcd(p, q) = 1 then there is a one-to-one homomorphism
between Zn and Zp × Zq.

A homomorphism of rings is a function that preserves both addition and
scalar multiplication. This means that one can do computations in Zn by
transferring elements m in Zn to elements (r, s) in Zp × Zq, doing the
computations there, then returning to Zn. The function that turns m into
(r, s) is easy: r = m mod p and s = m mod q.

The return function is almost as simple if we use the fact that 1 = ap+ bq
for integers a and b. Then we can return to Zn by
(r, s) 7→ m = (bqr + aps) mod n

5 / 9

The Chinese Remainder Theorem

The reason for the last equation in Zpq is the Chinese Remainder Theorem:

Theorem

If n = pq where gcd(p, q) = 1 then there is a one-to-one homomorphism
between Zn and Zp × Zq.

A homomorphism of rings is a function that preserves both addition and
scalar multiplication.

This means that one can do computations in Zn by
transferring elements m in Zn to elements (r, s) in Zp × Zq, doing the
computations there, then returning to Zn. The function that turns m into
(r, s) is easy: r = m mod p and s = m mod q.

The return function is almost as simple if we use the fact that 1 = ap+ bq
for integers a and b. Then we can return to Zn by
(r, s) 7→ m = (bqr + aps) mod n

5 / 9

The Chinese Remainder Theorem

The reason for the last equation in Zpq is the Chinese Remainder Theorem:

Theorem

If n = pq where gcd(p, q) = 1 then there is a one-to-one homomorphism
between Zn and Zp × Zq.

A homomorphism of rings is a function that preserves both addition and
scalar multiplication. This means that one can do computations in Zn by
transferring elements m in Zn to elements (r, s) in Zp × Zq, doing the
computations there, then returning to Zn.

The function that turns m into
(r, s) is easy: r = m mod p and s = m mod q.

The return function is almost as simple if we use the fact that 1 = ap+ bq
for integers a and b. Then we can return to Zn by
(r, s) 7→ m = (bqr + aps) mod n

5 / 9

The Chinese Remainder Theorem

The reason for the last equation in Zpq is the Chinese Remainder Theorem:

Theorem

If n = pq where gcd(p, q) = 1 then there is a one-to-one homomorphism
between Zn and Zp × Zq.

A homomorphism of rings is a function that preserves both addition and
scalar multiplication. This means that one can do computations in Zn by
transferring elements m in Zn to elements (r, s) in Zp × Zq, doing the
computations there, then returning to Zn. The function that turns m into
(r, s) is easy: r = m mod p and s = m mod q.

The return function is almost as simple if we use the fact that 1 = ap+ bq
for integers a and b. Then we can return to Zn by
(r, s) 7→ m = (bqr + aps) mod n

5 / 9

The Chinese Remainder Theorem

The reason for the last equation in Zpq is the Chinese Remainder Theorem:

Theorem

If n = pq where gcd(p, q) = 1 then there is a one-to-one homomorphism
between Zn and Zp × Zq.

A homomorphism of rings is a function that preserves both addition and
scalar multiplication. This means that one can do computations in Zn by
transferring elements m in Zn to elements (r, s) in Zp × Zq, doing the
computations there, then returning to Zn. The function that turns m into
(r, s) is easy: r = m mod p and s = m mod q.

The return function is almost as simple if we use the fact that 1 = ap+ bq
for integers a and b. Then we can return to Zn by
(r, s) 7→ m = (bqr + aps) mod n

5 / 9

Now for any positive integers j and l we have rjϕ(p)+1 = r in Zp and
slϕ(q)+1 = s for all s in Zq. It follows that (r, s)

kϕ(q)ϕ(p)+1 = (r, s) in
Zp × Zq for any positive integer l.

Transferring these computations back
to Zn, and using the fact that ϕ(n) = ϕ(p)ϕ(q) we get

mkϕ(n)+1 = m for any positive integer k.

6 / 9

Now for any positive integers j and l we have rjϕ(p)+1 = r in Zp and
slϕ(q)+1 = s for all s in Zq. It follows that (r, s)

kϕ(q)ϕ(p)+1 = (r, s) in
Zp × Zq for any positive integer l. Transferring these computations back
to Zn, and using the fact that ϕ(n) = ϕ(p)ϕ(q) we get

mkϕ(n)+1 = m for any positive integer k.

6 / 9

Where do e and d come from?

From the previous slide we see that we get mkϕ(n)+1 = m for any message
m ∈ Zn. In order to translate this into med = m we only need e and d to
satisfy ed = kϕ(n) + 1.

This is equivalent to ed mod ϕ(n) = 1 or e · d = 1
in the ring Zϕ(n). As a consequence all we need to do is pick e < ϕ(n)
such that gcd(e, ϕ(n)) = 1 and set d equal to its inverse in Zϕ(n).

Since p and q are odd, ϕ(n) = (p− 1)(q − 1) is even so e must be odd. In
practice a good fraction of the odd numbers less that ϕ(n) have
gcd(e, ϕ(n)) = 1, so e can be found eventually just by choosing odd
numbers k < ϕ(n) at random and testing the value of gcd(k, ϕ(n)).

[The textbook incorrectly computes the probability of getting a suitable e
in one try. The argument there correctly produces the odds of getting a
unit in Zn, but e has to be a unit in Zϕ(n).]

There are ways to get e without random choosing. For example, picking e
to be the larger of p or q always works, but that would be an insecure
choice.

7 / 9

Where do e and d come from?

From the previous slide we see that we get mkϕ(n)+1 = m for any message
m ∈ Zn. In order to translate this into med = m we only need e and d to
satisfy ed = kϕ(n) + 1. This is equivalent to ed mod ϕ(n) = 1 or e · d = 1
in the ring Zϕ(n). As a consequence all we need to do is pick e < ϕ(n)
such that gcd(e, ϕ(n)) = 1 and set d equal to its inverse in Zϕ(n).

Since p and q are odd, ϕ(n) = (p− 1)(q − 1) is even so e must be odd. In
practice a good fraction of the odd numbers less that ϕ(n) have
gcd(e, ϕ(n)) = 1, so e can be found eventually just by choosing odd
numbers k < ϕ(n) at random and testing the value of gcd(k, ϕ(n)).

[The textbook incorrectly computes the probability of getting a suitable e
in one try. The argument there correctly produces the odds of getting a
unit in Zn, but e has to be a unit in Zϕ(n).]

There are ways to get e without random choosing. For example, picking e
to be the larger of p or q always works, but that would be an insecure
choice.

7 / 9

Where do e and d come from?

From the previous slide we see that we get mkϕ(n)+1 = m for any message
m ∈ Zn. In order to translate this into med = m we only need e and d to
satisfy ed = kϕ(n) + 1. This is equivalent to ed mod ϕ(n) = 1 or e · d = 1
in the ring Zϕ(n). As a consequence all we need to do is pick e < ϕ(n)
such that gcd(e, ϕ(n)) = 1 and set d equal to its inverse in Zϕ(n).

Since p and q are odd, ϕ(n) = (p− 1)(q − 1) is even so e must be odd.

In
practice a good fraction of the odd numbers less that ϕ(n) have
gcd(e, ϕ(n)) = 1, so e can be found eventually just by choosing odd
numbers k < ϕ(n) at random and testing the value of gcd(k, ϕ(n)).

[The textbook incorrectly computes the probability of getting a suitable e
in one try. The argument there correctly produces the odds of getting a
unit in Zn, but e has to be a unit in Zϕ(n).]

There are ways to get e without random choosing. For example, picking e
to be the larger of p or q always works, but that would be an insecure
choice.

7 / 9

Where do e and d come from?

From the previous slide we see that we get mkϕ(n)+1 = m for any message
m ∈ Zn. In order to translate this into med = m we only need e and d to
satisfy ed = kϕ(n) + 1. This is equivalent to ed mod ϕ(n) = 1 or e · d = 1
in the ring Zϕ(n). As a consequence all we need to do is pick e < ϕ(n)
such that gcd(e, ϕ(n)) = 1 and set d equal to its inverse in Zϕ(n).

Since p and q are odd, ϕ(n) = (p− 1)(q − 1) is even so e must be odd. In
practice a good fraction of the odd numbers less that ϕ(n) have
gcd(e, ϕ(n)) = 1, so e can be found eventually just by choosing odd
numbers k < ϕ(n) at random and testing the value of gcd(k, ϕ(n)).

[The textbook incorrectly computes the probability of getting a suitable e
in one try. The argument there correctly produces the odds of getting a
unit in Zn, but e has to be a unit in Zϕ(n).]

There are ways to get e without random choosing. For example, picking e
to be the larger of p or q always works, but that would be an insecure
choice.

7 / 9

Where do e and d come from?

From the previous slide we see that we get mkϕ(n)+1 = m for any message
m ∈ Zn. In order to translate this into med = m we only need e and d to
satisfy ed = kϕ(n) + 1. This is equivalent to ed mod ϕ(n) = 1 or e · d = 1
in the ring Zϕ(n). As a consequence all we need to do is pick e < ϕ(n)
such that gcd(e, ϕ(n)) = 1 and set d equal to its inverse in Zϕ(n).

Since p and q are odd, ϕ(n) = (p− 1)(q − 1) is even so e must be odd. In
practice a good fraction of the odd numbers less that ϕ(n) have
gcd(e, ϕ(n)) = 1, so e can be found eventually just by choosing odd
numbers k < ϕ(n) at random and testing the value of gcd(k, ϕ(n)).

[The textbook incorrectly computes the probability of getting a suitable e
in one try. The argument there correctly produces the odds of getting a
unit in Zn, but e has to be a unit in Zϕ(n).]

There are ways to get e without random choosing. For example, picking e
to be the larger of p or q always works, but that would be an insecure
choice.

7 / 9

Where do e and d come from?

From the previous slide we see that we get mkϕ(n)+1 = m for any message
m ∈ Zn. In order to translate this into med = m we only need e and d to
satisfy ed = kϕ(n) + 1. This is equivalent to ed mod ϕ(n) = 1 or e · d = 1
in the ring Zϕ(n). As a consequence all we need to do is pick e < ϕ(n)
such that gcd(e, ϕ(n)) = 1 and set d equal to its inverse in Zϕ(n).

Since p and q are odd, ϕ(n) = (p− 1)(q − 1) is even so e must be odd. In
practice a good fraction of the odd numbers less that ϕ(n) have
gcd(e, ϕ(n)) = 1, so e can be found eventually just by choosing odd
numbers k < ϕ(n) at random and testing the value of gcd(k, ϕ(n)).

[The textbook incorrectly computes the probability of getting a suitable e
in one try. The argument there correctly produces the odds of getting a
unit in Zn, but e has to be a unit in Zϕ(n).]

There are ways to get e without random choosing. For example, picking e
to be the larger of p or q always works, but that would be an insecure
choice.

7 / 9

Where do p and q come from

It turns out there are ways to test whether a number is prime without
trying to eliminate all possible factorizations.

Since obtaining p and q has
to be done only once (e.g., when you install your browser) it doesn’t
matter too much if it takes a little time. So typically they are found by
randomly selecting numbers in an appropriate range of sizes and testing
them for primality until two primes are found.

There are some other concerns besides size and primality. The two primes
cannot be too close to each other. They also shouldn’t match what others
have chosen.

A more thorough coverage of the RSA system can be found on Wikipedia:
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

Coverage of primality testing can be found at
https://en.wikipedia.org/wiki/Primality_test

8 / 9

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Primality_test

Where do p and q come from

It turns out there are ways to test whether a number is prime without
trying to eliminate all possible factorizations. Since obtaining p and q has
to be done only once (e.g., when you install your browser) it doesn’t
matter too much if it takes a little time.

So typically they are found by
randomly selecting numbers in an appropriate range of sizes and testing
them for primality until two primes are found.

There are some other concerns besides size and primality. The two primes
cannot be too close to each other. They also shouldn’t match what others
have chosen.

A more thorough coverage of the RSA system can be found on Wikipedia:
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

Coverage of primality testing can be found at
https://en.wikipedia.org/wiki/Primality_test

8 / 9

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Primality_test

Where do p and q come from

It turns out there are ways to test whether a number is prime without
trying to eliminate all possible factorizations. Since obtaining p and q has
to be done only once (e.g., when you install your browser) it doesn’t
matter too much if it takes a little time. So typically they are found by
randomly selecting numbers in an appropriate range of sizes and testing
them for primality until two primes are found.

There are some other concerns besides size and primality. The two primes
cannot be too close to each other. They also shouldn’t match what others
have chosen.

A more thorough coverage of the RSA system can be found on Wikipedia:
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

Coverage of primality testing can be found at
https://en.wikipedia.org/wiki/Primality_test

8 / 9

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Primality_test

Where do p and q come from

It turns out there are ways to test whether a number is prime without
trying to eliminate all possible factorizations. Since obtaining p and q has
to be done only once (e.g., when you install your browser) it doesn’t
matter too much if it takes a little time. So typically they are found by
randomly selecting numbers in an appropriate range of sizes and testing
them for primality until two primes are found.

There are some other concerns besides size and primality. The two primes
cannot be too close to each other. They also shouldn’t match what others
have chosen.

A more thorough coverage of the RSA system can be found on Wikipedia:
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

Coverage of primality testing can be found at
https://en.wikipedia.org/wiki/Primality_test

8 / 9

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Primality_test

Is this cryptography system unbreakable?

No one knows how secure the RSA system is. Its security lies in being
unable to determine d from n and e.

This can be done easily if the
factorization of n can be found. It is thought (though not proven) that
determining d is computationally as hard as factoring n. How hard could
that be?

Using state-of-the-art factoring algorithms, the record for finding p and q
is a 795 bit number n. It was done in 2019 and took 900 years of CPU
time (distributed over thousands of computers that donated CPU time).
Numbers n up to 512 bits can be routinely factored in a few weeks on
common hardware. Most numbers n used these days are longer than 1024
bits and recommendations for the future range from 2048 to 4096 bits.

A quantum computer, should one ever be developed for practical use,
could theoretically quickly factor almost any size number.

There are attacks on RSA that involve the special nature of some
messages. Other parts of the RSA system (e.g. scrambling m) are
designed to avoid such attacks.

9 / 9

Is this cryptography system unbreakable?

No one knows how secure the RSA system is. Its security lies in being
unable to determine d from n and e. This can be done easily if the
factorization of n can be found. It is thought (though not proven) that
determining d is computationally as hard as factoring n. How hard could
that be?

Using state-of-the-art factoring algorithms, the record for finding p and q
is a 795 bit number n. It was done in 2019 and took 900 years of CPU
time (distributed over thousands of computers that donated CPU time).
Numbers n up to 512 bits can be routinely factored in a few weeks on
common hardware. Most numbers n used these days are longer than 1024
bits and recommendations for the future range from 2048 to 4096 bits.

A quantum computer, should one ever be developed for practical use,
could theoretically quickly factor almost any size number.

There are attacks on RSA that involve the special nature of some
messages. Other parts of the RSA system (e.g. scrambling m) are
designed to avoid such attacks.

9 / 9

Is this cryptography system unbreakable?

No one knows how secure the RSA system is. Its security lies in being
unable to determine d from n and e. This can be done easily if the
factorization of n can be found. It is thought (though not proven) that
determining d is computationally as hard as factoring n. How hard could
that be?

Using state-of-the-art factoring algorithms, the record for finding p and q
is a 795 bit number n. It was done in 2019 and took 900 years of CPU
time (distributed over thousands of computers that donated CPU time).

Numbers n up to 512 bits can be routinely factored in a few weeks on
common hardware. Most numbers n used these days are longer than 1024
bits and recommendations for the future range from 2048 to 4096 bits.

A quantum computer, should one ever be developed for practical use,
could theoretically quickly factor almost any size number.

There are attacks on RSA that involve the special nature of some
messages. Other parts of the RSA system (e.g. scrambling m) are
designed to avoid such attacks.

9 / 9

Is this cryptography system unbreakable?

No one knows how secure the RSA system is. Its security lies in being
unable to determine d from n and e. This can be done easily if the
factorization of n can be found. It is thought (though not proven) that
determining d is computationally as hard as factoring n. How hard could
that be?

Using state-of-the-art factoring algorithms, the record for finding p and q
is a 795 bit number n. It was done in 2019 and took 900 years of CPU
time (distributed over thousands of computers that donated CPU time).
Numbers n up to 512 bits can be routinely factored in a few weeks on
common hardware. Most numbers n used these days are longer than 1024
bits and recommendations for the future range from 2048 to 4096 bits.

A quantum computer, should one ever be developed for practical use,
could theoretically quickly factor almost any size number.

There are attacks on RSA that involve the special nature of some
messages. Other parts of the RSA system (e.g. scrambling m) are
designed to avoid such attacks.

9 / 9

Is this cryptography system unbreakable?

No one knows how secure the RSA system is. Its security lies in being
unable to determine d from n and e. This can be done easily if the
factorization of n can be found. It is thought (though not proven) that
determining d is computationally as hard as factoring n. How hard could
that be?

Using state-of-the-art factoring algorithms, the record for finding p and q
is a 795 bit number n. It was done in 2019 and took 900 years of CPU
time (distributed over thousands of computers that donated CPU time).
Numbers n up to 512 bits can be routinely factored in a few weeks on
common hardware. Most numbers n used these days are longer than 1024
bits and recommendations for the future range from 2048 to 4096 bits.

A quantum computer, should one ever be developed for practical use,
could theoretically quickly factor almost any size number.

There are attacks on RSA that involve the special nature of some
messages. Other parts of the RSA system (e.g. scrambling m) are
designed to avoid such attacks.

9 / 9

Is this cryptography system unbreakable?

No one knows how secure the RSA system is. Its security lies in being
unable to determine d from n and e. This can be done easily if the
factorization of n can be found. It is thought (though not proven) that
determining d is computationally as hard as factoring n. How hard could
that be?

Using state-of-the-art factoring algorithms, the record for finding p and q
is a 795 bit number n. It was done in 2019 and took 900 years of CPU
time (distributed over thousands of computers that donated CPU time).
Numbers n up to 512 bits can be routinely factored in a few weeks on
common hardware. Most numbers n used these days are longer than 1024
bits and recommendations for the future range from 2048 to 4096 bits.

A quantum computer, should one ever be developed for practical use,
could theoretically quickly factor almost any size number.

There are attacks on RSA that involve the special nature of some
messages. Other parts of the RSA system (e.g. scrambling m) are
designed to avoid such attacks.

9 / 9

