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Computing in our example groups

I hope everyone can now recognize, and compute in, the example groups
covered in the last lecture.

If I say, “in the group Z9 with addition mod 9,
find 6 + 6 and 6 + 6 + 6.” You should respond “6 + 6 = 3 and
(6 + 6) + 6 = 3 + 6 = 0.”

Similarly, for u(Z9) with multiplication mod 9 if asked for 4 · 4 and 4 · 4 · 4
you should be able to find 4 · 4 = 16 mod 9 = 7 and
(4 · 4) · 4 = 7 · 4 = 28 mod 9 = 1.

Finally, for the permutation α =
(
1 2 3 4
2 3 1 4

)
you should be able to find

αα =
(
1 2 3 4
3 1 2 4

)
and ααα =

(
1 2 3 4
1 2 3 4

)
Note that in all these cases, repeating the operation on a single element
eventually produced the identity of that group. This is not an accident.
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Subgroups

When we speak of a group G with an operation ∗, we may write “the
group (G, ∗)”. The point is that you need both the set and the operation
and this notation tells you both.

Thus the groups (Z9,+) and (u(Z9), ·)
were discussed on the previous page. If the operation has already been
specified or is understood from context, we just say “the group G.”

We define a subgroup of a group (G, ∗) to be a nonempty subset H of G
which is a group using the same operation ∗. Notice that in G we already
have an identity element as well as inverses. For H to be a subgroup the
identity must be in H and the inverse of any element in H must be in H.
But the most important condition is the first one in the definition of a
group: if a and b are in H then a ∗ b must be in H.

The second condition in the definition of group (associativity) will
automatically be satisfied for H since it is purely a property of the
operation and doesn’t care whether the elements come are in the subset H.
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Conditions for a subset to be a subgroup

We only have to check two conditions to see if a subset H of a group
(G, ∗) is a subgroup:

Theorem

If (G, ∗) is a group and H is a nonempty subset, then H is a subgroup if
and only if H satisfies the two conditions:

• For any a, b in H, a ∗ b is in H

• For any a in H, the inverse of a is in H.

Moreover, if H is finite, the second condition follows from the first, so we
only have to check closure.

These are the first and last of the four parts of the definition of a group.
The middle two parts of the definition (associativity and existence of an
identity) follow from G being a group and the above conditions. The
identity is a ∗ a−1 which must belong to H if the above two conditions
hold.
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Examples of subgroups

• {1, 4, 7} is a subgroup of u(Z9) = {1, 2, 4, 5, 7, 8}

• {0, 3, 6} is a subgroup of Z9.

•
{(

1 2 3 4
1 2 3 4

)
,
(
1 2 3 4
2 3 1 4

)
,
(
1 2 3 4
3 1 2 4

)}
is a subgroup of S4.

For the first of these we need to check six possible products: 4 · 4 = 7,
4 · 7 = 1, 7 · 7 = 4 (plus three more).

For the second one: 3 + 3 = 6, 3 + 6 = 0, 6 + 6 = 3 (plus three more).

For the third example, these are the identity permutation id, plus α and
αα from earlier. We have already computed α(αα) = id. Moreover,
(αα)(αα) = (α(αα))α = idα = α, etc.
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Powers in groups

If we have any group (G, ·) (I’ll use multiplication notation for simplicity)
and any element a in G, we can abbreviate a · a by a2 and a · a · a by a3,
etc.

Similarly, a−1 is the inverse of a, a−2 = a−1 · a−1 is the inverse of a2

and a−3 = a−1 · a−1 · a−1 is the inverse of a3, etc.

[If the operation is ‘+’, it is more traditional to write repeated operations
as follows: a+ a = 2a, a+ a+ a = 3a. In this case the inverse of a would
be written −a. Then −3a, for example, would mean −a+−a+−a which
is also the inverse of 3a.]

Because of the regrouping property, a · a · a is not ambiguous because both
possible interpretations (a · a) · a and a · (a · a) must be equal. The same is
true of all powers.
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Cyclic groups and subgroups

The basic property of this notation is that an · ak = an+k and this holds
regardless of the signs of the integers n and k. For this to be consistent,
we have to define a0 to be the identity element e and a1 = a. [For
additive groups we have na+ ka = (n+ k)a, 0a is the identity (usually
called 0) and 1a = a.]

If (G, ·) is a finite group with n elements, and we start with an element a,
then the n+ 1 elements a0, a1, a2, a3, · · · , an cannot all be different. So
at some point am equals some previous element aj . Then we can operate
by a−j on both sides of am = aj to get am−j = e = a0.

We conclude that if G is finite then successive powers of any element a
eventually produce the identity, say ak = e, and after that, previous powers
are repeated. That is, ak+1 = ak · a = ea = a. We’ll see in a minute that
{a, a2, . . . , ak = e} is a group. It is called the cyclic subgroup generated
by a and is denoted ⟨a⟩.
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Why is ⟨a⟩ a subgroup?

The first integer k for which ak = e is called the order of a. It also
happens to be the order (i.e. size) of ⟨a⟩.

Note that if m = qk then aqk is a product of qk a’s. These can be grouped
into a product of q repetitions of ak. That is, aqk = (ak)q. If ak = e then
aqk = eq = e. Therefore, if m = qk + r then am = aqkar = ear = ar.
That is, if k is the order of a, then am = am mod k.

To see that ⟨a⟩ is a group we only have to show every element has an
inverse and that it is closed under the operation. To see the first note that
aj · ak−j = ak = e if k is the order of a. Thus every aj has an inverse
which is also in ⟨a⟩. To see closure, note that aj · am = a(j+m) mod k,
which is also in ⟨a⟩.
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Examples of cyclic subgroups

For the group Z9, 6 has order 3 and ⟨6⟩ = {6, 6 + 6 = 3, 3 + 6 = 0}.

Note
that Z9 is itself cyclic, being equal to ⟨1⟩. This happens for every (Zn,+).

For u(Z9), 4 has order 3 and ⟨4⟩ = {4, 4 · 4 = 7, 7 · 4 = 1}. The element 2
has order 6. The element 8 has order 2.

For S4, α =
(
1 2 3 4
2 3 1 4

)
has order 3 and

⟨α⟩ =
{
α =

(
1 2 3 4
2 3 1 4

)
, α2 =

(
1 2 3 4
3 1 2 4

)
, α3 =

(
1 2 3 4
1 2 3 4

)}
Some more examples along the same lines:
In (Z15,+), 3 has order 5 and ⟨3⟩ = {3, 6, 9, 12, 0}.
In (u(Z16), ·), 5 has order 4 and ⟨5⟩ = {5, 9, 13, 1}.

In S5, γ =
(
1 2 3 4 5
2 4 3 5 1

)
has order 4 and

⟨γ⟩ =
{(

1 2 3 4 5
2 4 3 5 1

)
,
(
1 2 3 4 5
4 5 3 1 2

)
,
(
1 2 3 4 5
5 1 3 2 4

)
,
(
1 2 3 4 5
1 2 3 4 5

)}
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Cosets of a subgroup

Definition: If (G, ·) is a group and H is any subgroup of G, and a is any
element of G then a ·H means the set of all products a · h for h ∈ H.

This set a ·H is called a left coset of H.

H · a would be defined similarly and called a right coset of H. If the
operation is addition, cosets would be written a+H. The properties of
left and right cosets are essentially the same, so I will deal only with left
cosets and just say “cosets”.

Consider the group (Z12,+) and the subgroup H = ⟨3⟩ = {0, 3, 6, 9}.
Then 2 +H = {2, 5, 8, 11} is one of the cosets of H. Note that 2 +H is
the same set as 5 +H (check this). In the table on the next page, all
possible distinct cosets of H are shown
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cosets and just say “cosets”.

Consider the group (Z12,+) and the subgroup H = ⟨3⟩ = {0, 3, 6, 9}.
Then 2 +H = {2, 5, 8, 11} is one of the cosets of H. Note that 2 +H is
the same set as 5 +H (check this).

In the table on the next page, all
possible distinct cosets of H are shown
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Properties of cosets

Cosets of the subgroup H = {0, 3, 6, 9} in Z12:

H = 0 +H = {0, 3, 6, 9}
1 +H = {1, 4, 7, 10}
2 +H = {2, 5, 8, 11}

These repeat for other additions: 3 +H = 0 +H, 4 +H = 1 +H, and so
on. This sort of thing happens for every subgroup of any group.

Theorem

• Two cosets a ·H and b ·H are equal if b−1 · a belongs to H and
otherwise are disjoint.

• The size of each coset is the same as the size of H: |a ·H| = |H|
• Every element of G is in one of the cosets of H. In fact a belongs to

a ·H because H contains the identity e, and so a · e belongs to a ·H.
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Lagrange’s Theorem

The since all cosets are disjoint, and together make up all of G it follows
that |G| is the sum of the sizes of the cosets.

Since the cosets are all the
size of H, that sum is just the product of the number of cosets times the
size of H. For example, we considered Z12 earlier. A certain subgroup had
3 cosets, each of size 4.

These ideas lead to the following theorem:

Theorem (Lagrange’s Theorem)

If H is a subgroup of G, then |H| evenly divides |G| and the number of
cosets of H is |G|/|H|.

We can apply Lagrange’s Theorem to the subgroup H = ⟨a⟩. Suppose
|H| = k and |G| = n, then n/k = q is an integer. Since ak = e it follows
from earlier that an = aqk = e. That is,

for any a in G, a|G| = e
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Examples

We can check Lagrange’s Theorem against our previous examples. The
group (Z9,+) has order 9 and the subgroup H = ⟨6⟩ has order 3, so the
number of cosets will be 9/3 = 3.

The group (u(Z9), ·) has order ϕ(9) = 6 and the subgroup H = ⟨4⟩ has
order 3, so the number of cosets will be 6/3 = 2.

The group S4 has order 4! = 24 and the subgroup ⟨α⟩, α =
(
1 2 3 4
2 3 1 4

)
from before, has order 3, so it has 24/3 = 8 cosets.

The group (Z15,+) has order 15 and the subgroup ⟨3⟩ has order 5, so
there are 15/5 = 3 cosets.

The group (u(Z16), ·) has order ϕ(16) = 8 and the subgroup ⟨5⟩ has order
4, so there are 8/4 = 2 cosets.

Lagrange’s Theorem puts limits on the possible subgroups. For example,
(u(Z16), ·) cannot have any subgroups with size 3 or 5. The only possible
sizes are factors of 8: 1, 2, 4, 8.
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