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What are groups and what are they for?

Over the centuries mathematicians have noticed similarities in many
problems. This led to attempts to extract the common properties of these
problems and study those properties in isolation.

This was especially true for problems that involve symmetry, whether in
geometry, theory of equations, or combinatorics. Problems that involved
symmetry led to the concept of groups.

The symmetries in geometry are the kinds you learn about in grade school.
If a figure has left-right symmetry, that means you can flip the figure over
left-to-right without changing the figure.

There are is also rotation symmetry, meaning you can rotate the figure
around a center point some number of degrees without changing the
figure. The group involved here is not the figure, but rather the collection
of motions that do not change the figure.
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Invertibility is the key

One property that motions of a symmetric figure have is that they can be
combined. Another key property is: a motion that doesn’t change the
figure can be undone by another motion: If a figure is flipped over, you
can flip it back. If it is rotated, you can rotate it back.

While symmetry can be obvious in geometry, it is not so obvious in other
contexts. Nevertheless it often exists below the surface, and the concept
of a group can bring it to light.
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What is a group?

A group is a set, together with a binary operation.

Depending on the
example the operation could be addition, multiplication, or something like
”apply two motions in a row”.

If I don’t want to specify exactly what the operation is, I will use
multiplication-like notation. Here I will assume the operation is called ‘∗’.
Then (G, ∗) is a group if

C1 For any a, b in G, a ∗ b is in G. (We say G is “closed under ∗”.)
G1 For any a, b, c in G, (a ∗ b) ∗ c = a ∗ (b ∗ c). (We say “∗ is associative”)

G2 There exists an element e ∈ G such that for every a in G,
e ∗ a = a = a ∗ e. (e is called the “identity” element. In examples, it
could be 0 or 1 or something else entirely.)

G3 For any a in G there is another element b such that a ∗ b = e = b ∗ a
(b is called the “inverse” of a. In examples, b can be written −a or
a−1.)
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Examples: groups associated with rings

Example 1: The properties that a ring R is required to have (textbook,
section 14.1) include the 4 that groups need when ‘+’ is the operation, so
(R,+) is a group:

1. The closure property is required of all rings

2. The associative property: (a+ b) + c = a+ (b+ c).

3. The identity element is 0: a+ 0 = a = 0 + a.

4. The inverse of a is −a: a+−a = 0 = −a+ a.

Example 2: If a ring R has a unity, then the set of units u(R) is a group
where the operation is multiplication.

1. The closure property follows from the fact that if a, b are in u(R)
then (ab)−1 = b−1a−1 so ab is also a unit.

2. The associative property (ab)c = a(bc) a basic condition for rings.

3. The identity element is the unity u: a · u = a = u · a.
4. The inverse of a is a−1. It is also a unit.
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Permutations

The permutations of a finite set A, can be viewed as 1-to-1 functions from
the set of possible positions to the set A.

But we’ve seen that ‘positions’
are not required for permutations. We can consider all 1-to-1 functions
from any set X to A and count them as permutations.

To get a group out of this we need 1-to-1 functions from A to A. If A has
n elements we call Sn the set of all 1-to-1 functions from A to A, with the
operation of composition (denoted f ◦ g, defined by (f ◦ g)(x) = f(g(x))).
We call Sn the symmetric group on n objects. It has n! elements.

1. The composition of two 1-to-1 functions in Sn is also 1-to-1.

2. The associative property f ◦ (g ◦ h) = (f ◦ g) ◦ h comes from the fact
that when applied to some element x both ultimately equal
f(g(h(x))).

3. The identity element is the identity function: id(x) = x.

4. The inverse of f in Sn is the inverse function.

6 / 1



Permutations

The permutations of a finite set A, can be viewed as 1-to-1 functions from
the set of possible positions to the set A. But we’ve seen that ‘positions’
are not required for permutations. We can consider all 1-to-1 functions
from any set X to A and count them as permutations.

To get a group out of this we need 1-to-1 functions from A to A. If A has
n elements we call Sn the set of all 1-to-1 functions from A to A, with the
operation of composition (denoted f ◦ g, defined by (f ◦ g)(x) = f(g(x))).
We call Sn the symmetric group on n objects. It has n! elements.

1. The composition of two 1-to-1 functions in Sn is also 1-to-1.

2. The associative property f ◦ (g ◦ h) = (f ◦ g) ◦ h comes from the fact
that when applied to some element x both ultimately equal
f(g(h(x))).

3. The identity element is the identity function: id(x) = x.

4. The inverse of f in Sn is the inverse function.

6 / 1



Permutations

The permutations of a finite set A, can be viewed as 1-to-1 functions from
the set of possible positions to the set A. But we’ve seen that ‘positions’
are not required for permutations. We can consider all 1-to-1 functions
from any set X to A and count them as permutations.

To get a group out of this we need 1-to-1 functions from A to A.

If A has
n elements we call Sn the set of all 1-to-1 functions from A to A, with the
operation of composition (denoted f ◦ g, defined by (f ◦ g)(x) = f(g(x))).
We call Sn the symmetric group on n objects. It has n! elements.

1. The composition of two 1-to-1 functions in Sn is also 1-to-1.

2. The associative property f ◦ (g ◦ h) = (f ◦ g) ◦ h comes from the fact
that when applied to some element x both ultimately equal
f(g(h(x))).

3. The identity element is the identity function: id(x) = x.

4. The inverse of f in Sn is the inverse function.

6 / 1



Permutations

The permutations of a finite set A, can be viewed as 1-to-1 functions from
the set of possible positions to the set A. But we’ve seen that ‘positions’
are not required for permutations. We can consider all 1-to-1 functions
from any set X to A and count them as permutations.

To get a group out of this we need 1-to-1 functions from A to A. If A has
n elements we call Sn the set of all 1-to-1 functions from A to A, with the
operation of composition (denoted f ◦ g, defined by (f ◦ g)(x) = f(g(x))).

We call Sn the symmetric group on n objects. It has n! elements.

1. The composition of two 1-to-1 functions in Sn is also 1-to-1.

2. The associative property f ◦ (g ◦ h) = (f ◦ g) ◦ h comes from the fact
that when applied to some element x both ultimately equal
f(g(h(x))).

3. The identity element is the identity function: id(x) = x.

4. The inverse of f in Sn is the inverse function.

6 / 1



Permutations

The permutations of a finite set A, can be viewed as 1-to-1 functions from
the set of possible positions to the set A. But we’ve seen that ‘positions’
are not required for permutations. We can consider all 1-to-1 functions
from any set X to A and count them as permutations.

To get a group out of this we need 1-to-1 functions from A to A. If A has
n elements we call Sn the set of all 1-to-1 functions from A to A, with the
operation of composition (denoted f ◦ g, defined by (f ◦ g)(x) = f(g(x))).
We call Sn the symmetric group on n objects. It has n! elements.

1. The composition of two 1-to-1 functions in Sn is also 1-to-1.

2. The associative property f ◦ (g ◦ h) = (f ◦ g) ◦ h comes from the fact
that when applied to some element x both ultimately equal
f(g(h(x))).

3. The identity element is the identity function: id(x) = x.

4. The inverse of f in Sn is the inverse function.

6 / 1



Permutations

The permutations of a finite set A, can be viewed as 1-to-1 functions from
the set of possible positions to the set A. But we’ve seen that ‘positions’
are not required for permutations. We can consider all 1-to-1 functions
from any set X to A and count them as permutations.

To get a group out of this we need 1-to-1 functions from A to A. If A has
n elements we call Sn the set of all 1-to-1 functions from A to A, with the
operation of composition (denoted f ◦ g, defined by (f ◦ g)(x) = f(g(x))).
We call Sn the symmetric group on n objects. It has n! elements.

1. The composition of two 1-to-1 functions in Sn is also 1-to-1.

2. The associative property f ◦ (g ◦ h) = (f ◦ g) ◦ h comes from the fact
that when applied to some element x both ultimately equal
f(g(h(x))).

3. The identity element is the identity function: id(x) = x.

4. The inverse of f in Sn is the inverse function.
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Properties of groups

If it is not specified what group G we are dealing with, we will always use
the same notation as if the operation is multiplication.

That is, writing ab
or a · b instead of something like a ∗ b.

• The cancellation properties: if ab = ac then b = c. This is because we
can multiply both sides by a−1 to get a−1(ab) = a−1(ac) then
regroup to (a−1a)b = (a−1a)c. This is eb = ec which says b = c.
Similarly, if ba = ca then b = c.

• The identity is unique: if ba = a write this as ba = ea and then
cancellation gives b = e.

• The inverse is unique: if b and c are inverses of a, so that
ab = e = ac, use cancellation to get b = c.
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Order of a group

It is traditional to call the size of a group G its ‘order’. For example the
order of Zn (a group with addition) is n.

The order of u(Zn) (the group of units of the ring Zn) is ϕ(n) (because
that is the number of units in Zn).

The order of Sn is n!.

Going back to the idea of motions of a symmetric figure, the set of
motions of a square has order 8: 4 lines of symmetry (vertical, horizontal
and 2 diagonals) give 4 ‘flipping over’ motions. There are four rotations
(by 0◦, 90◦, 180◦ and 270◦). We’ll have more to say about these kinds of
groups later in the chapter.
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A further look at examples

First a definition. A group G is called Abelian (or abelian) if ab = ba for
all a, b in G. (Named after the mathematician Niels Henrik Abel.)

A ring with addition is Abelian: a+ b = b+ a is one of the requirements
for rings.

The group of units of a ring may not be Abelian, but if R is a
commutative ring then it is. In particular, u(Zn) is Abelian.

Some other groups associated with integers:

• The group of units of the ring Z is {1,−1} with multiplication for the
operation.

• The additive group of Z2 is {0, 1} with addition mod 2.

• The additive group of Zn
2 consists of strings of bits with length n.

The operation is bitwise addition mod 2 (i.e., the bitwise xor).
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More on permutations

Consider S4, the permutations of a set A with 4 elements. The set doesn’t
really matter, so let’s use A = {1, 2, 3, 4}.

We need a notation that allows us to quickly define permutations. We use
one based on defining a function with a table of values. For example, the
table

x 1 2 3 4

f(x) 2 3 1 4

defines a function f whose values are obtained by looking up x in the first
row and reading off the value f(x) below it. Notice that the second row is
a permutation of the first row. Every different permutation will produce a
different 1-to-1 function. This is in part why we simply call these functions
permutations.
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Permutation notation

It is traditional to name permutations with Greek letters. It is also
traditional to write the composition of two permutation, say α and β, by
αβ.

This is interpreted as ‘first α then β’. [In function notation this would
be β(α(x)) because we evaluate innermost parentheses first.]. We

abbreviate the table on the previous page as α =
(
1 2 3 4
2 3 1 4

)
, which

defines α to be the same function as f .

If β =
(
1 2 3 4
3 4 1 2

)
then αβ =

(
1 2 3 4
4 1 3 2

)
. The following diagrams can

help to see this.

We can visualize functions using arrows. On the next slide we see arrows
used to represent α and β, as well as αβ
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Aids in composing permutation

Below α =
(
1 2 3 4
2 3 1 4

)
, β =

(
1 2 3 4
3 4 1 2

)
, and αβ =

(
1 2 3 4
4 1 3 2

)
.

1

2

3

4

1

2

3

4

1

2

3

4

α β

1

2

3

4

1

2

3

4

αβ

To get the second figure from the first, connect the head of an α-arrow to
the tail of the β-arrow and straighten it out.
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Aids in visualizing permutations

We can imagine permutations as representing motions. If 1, 2, 3, and 4
label four points in a plane (or in space) we can imagine a permutation as
moving one point to another.

For example, α from before moves 1 to 2, 2
to 3, and 3 to 1 while leaving 4 where it is. We can represent this with
arrows connecting the points. This is done below for α and β

1 2

34

α

1 2

34

β

This can be used to compute αα. Just follow two arrows. For example
starting from 1, the arrows go to 2 then 3, so we see that αα moves 1 to
3. It is not so useful for computing αβ. One can do that by drawing both
permutations in the same figure, with different colored arrows. See the
figure on the next page.
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α

1 2

34

β

This can be used to compute αα. Just follow two arrows. For example
starting from 1, the arrows go to 2 then 3, so we see that αα moves 1 to
3. It is not so useful for computing αβ. One can do that by drawing both
permutations in the same figure, with different colored arrows. See the
figure on the next page.
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Composing permutations as motions

1 2

34

We can then follow the black arrow from 1 to 2 and then the red arrow
from 2 to 4 to see that αβ moves 1 to 4. This gives

1 2

34

αβ

From this we can read off αβ =
(
1 2 3 4
4 1 3 2

)
.
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