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First order recurrence relations

You will be expected to solve two types. In the first type, some constant
or expression is added to each term to produce the next term.

Some
examples:

• an = an−1 + 7, a0 = 4. Solution: an = 4 + 7n.

• an = an−1 + 3, a0 = 1. Solution: an = 1 + 3n.

These are called arithmetic progressions. Any recurrence relation of the
form an = an−1 + d, a0 = c (where d and c are constants) has the
solution an = c+ dn.

More generally, an expression can be added.

• an = an−1 + 4n, a0 = 3. Solution: an = 3 + 4 + 8 + · · ·+ 4n, or

an = 3 +
n∑

k=1

4k.

• an = an−1 + 3n−1, a0 = 2. Solution:

an = 2 + 1 + 3 + 32 + · · ·+ 3n−1, or an = 2 +
n∑

k=1

3k−1.
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If a recurrence relation has the form an = an−1 + f(n) for some expression
f(n) and a0 = c is the initial condition, then the solution is

an = c+ f(1) + f(2) + · · ·+ f(n), or an = c+
n∑

k=1

f(k).

For the second type, some constant or expression is multiplied by each
term to produce the next term. Some examples:

• an = 3an−1, a0 = 2. Solution an = (2)3n.

• an = 5an−1, a0 = 4. Solution an = (4)5n.

These are called geometric progressions. Any recurrence relation of the
form an = ran−1, a0 = c (where r and c are constants) has the solution
an = c rn.

More generally, we can multiply by an expression.

• an = n2an−1, a0 = 3. Solution: an = 3(12)(22)(32) · · · (n2).

• an = 4nan−1, a0 = 5. Solution: an = 5(41)(42)(43) · · · (4n).
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If a recurrence relation has the form an = f(n)an−1 for some expression
f(n) and a0 = c is the initial condition, then the solution is
an = cf(1)f(2)f(3) · · · f(n).

Second order recurrence relations

We considered only constant coefficient linear recurrence relations. These
we split into homogeneous versus nonhomogeneous:

• Homogeneous: an + ban−1 + can−2 = 0.

• Nonhomogeneous: an + ban−1 + can−2 = f(n).

We solve the homogeneous case by first solving the characteristic equation:
r2 + br + c = 0. What we do next depends on what the roots are.
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Case 1: there are two real roots

An example is an − an−1 − 6an−2 = 0, a0 = 0, a1 = 1.

The characteristic equation is r2 − r − 6 = 0 or (r − 3)(r + 2) = 0.

The solutions are r = 3 and r = −2. These give basic solutions 3n and
(−2)n.

The general solution is an = C13
n + C2(−2)n.

The initial conditions can be written:

a0 = 0 = C1 + C2 and a1 = 1 = 3C1 − 2C2

Solving these gives C1 = 1/5 and C2 = −1/5 , and the completed solution
is

an = (1/5)3n − (1/5)(−2)n.
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Case 2: there is a double root

An example is an − 10an−1 + 25an−2 = 0, a0 = 1, a1 = 7.

The characteristic equation is r2 − 10r + 25 = 0 or (r − 5)(r − 5) = 0.

The solutions are r = 5 and r = 5. These give basic solutions 5n and n5n.

The general solution is an = C15
n + C2n5

n.

The initial conditions can be written:

a0 = 1 = C1 and a1 = 7 = 5C1 + 5C2

Solving these gives C1 = 1 and C2 = 2/5 , and the completed solution is

an = 5n + (2/5)n5n.
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Case 3: there are two complex roots

An example is an − 6an−1 + 10an−2 = 0, a0 = 2, a1 = 4.

The characteristic equation is r2 − 6r + 10 = 0.

The solutions are r = 3 + i and r = 3− i. These give basic solutions
(3 + i)n and (3− i)n.

The general solution is an = C1(3 + i)n + C2(3− i)n.

The initial conditions can be written:

a0 = 2 = C1 + C2 and a1 = 4 = (3 + i)C1 + (3− i)C2

Solving these gives C1 = 1 + i and C2 = 1− i , and the completed
solution is

an = (1 + i)(3 + i)n + (1− i)(3− i)n.
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Nonhomogeneous recurrence relations

Our method consists of (1) solving the corresponding homogeneous
recurrence relation, (2) finding a particular solution, (3) adding the two
together, and (4) applying the initial conditions.

We’ve already covered (1), while (3) and (4) are straightforward, so we’ll
concentrate on (2).

If the right side is a polynomial, possibly times an nth power, then we
expect there is a particular solution that is a polynomial of the same
degree times the same nth power.

An example: an − an−1 − 6an−2 = (4)2n, a0 = 1, a1 = 2 .

8 / 1



Nonhomogeneous recurrence relations

Our method consists of (1) solving the corresponding homogeneous
recurrence relation,

(2) finding a particular solution, (3) adding the two
together, and (4) applying the initial conditions.

We’ve already covered (1), while (3) and (4) are straightforward, so we’ll
concentrate on (2).

If the right side is a polynomial, possibly times an nth power, then we
expect there is a particular solution that is a polynomial of the same
degree times the same nth power.

An example: an − an−1 − 6an−2 = (4)2n, a0 = 1, a1 = 2 .

8 / 1



Nonhomogeneous recurrence relations

Our method consists of (1) solving the corresponding homogeneous
recurrence relation, (2) finding a particular solution,

(3) adding the two
together, and (4) applying the initial conditions.

We’ve already covered (1), while (3) and (4) are straightforward, so we’ll
concentrate on (2).

If the right side is a polynomial, possibly times an nth power, then we
expect there is a particular solution that is a polynomial of the same
degree times the same nth power.

An example: an − an−1 − 6an−2 = (4)2n, a0 = 1, a1 = 2 .

8 / 1



Nonhomogeneous recurrence relations

Our method consists of (1) solving the corresponding homogeneous
recurrence relation, (2) finding a particular solution, (3) adding the two
together,

and (4) applying the initial conditions.

We’ve already covered (1), while (3) and (4) are straightforward, so we’ll
concentrate on (2).

If the right side is a polynomial, possibly times an nth power, then we
expect there is a particular solution that is a polynomial of the same
degree times the same nth power.

An example: an − an−1 − 6an−2 = (4)2n, a0 = 1, a1 = 2 .

8 / 1



Nonhomogeneous recurrence relations

Our method consists of (1) solving the corresponding homogeneous
recurrence relation, (2) finding a particular solution, (3) adding the two
together, and (4) applying the initial conditions.

We’ve already covered (1), while (3) and (4) are straightforward, so we’ll
concentrate on (2).

If the right side is a polynomial, possibly times an nth power, then we
expect there is a particular solution that is a polynomial of the same
degree times the same nth power.

An example: an − an−1 − 6an−2 = (4)2n, a0 = 1, a1 = 2 .

8 / 1



Nonhomogeneous recurrence relations

Our method consists of (1) solving the corresponding homogeneous
recurrence relation, (2) finding a particular solution, (3) adding the two
together, and (4) applying the initial conditions.

We’ve already covered (1), while (3) and (4) are straightforward, so we’ll
concentrate on (2).

If the right side is a polynomial, possibly times an nth power, then we
expect there is a particular solution that is a polynomial of the same
degree times the same nth power.

An example: an − an−1 − 6an−2 = (4)2n, a0 = 1, a1 = 2 .

8 / 1



Nonhomogeneous recurrence relations

Our method consists of (1) solving the corresponding homogeneous
recurrence relation, (2) finding a particular solution, (3) adding the two
together, and (4) applying the initial conditions.

We’ve already covered (1), while (3) and (4) are straightforward, so we’ll
concentrate on (2).

If the right side is a polynomial, possibly times an nth power, then we
expect there is a particular solution that is a polynomial of the same
degree times the same nth power.

An example: an − an−1 − 6an−2 = (4)2n, a0 = 1, a1 = 2 .

8 / 1



Nonhomogeneous recurrence relations

Our method consists of (1) solving the corresponding homogeneous
recurrence relation, (2) finding a particular solution, (3) adding the two
together, and (4) applying the initial conditions.

We’ve already covered (1), while (3) and (4) are straightforward, so we’ll
concentrate on (2).

If the right side is a polynomial, possibly times an nth power, then we
expect there is a particular solution that is a polynomial of the same
degree times the same nth power.

An example: an − an−1 − 6an−2 = (4)2n, a0 = 1, a1 = 2 .

8 / 1



We solve it by first solving the corresponding homogeneous recurrence
relation: an − an−1 − 6an−2 = 0. This gives the homogeneous solution:

a(h)n = C13
n + C2(−2)n.

Then we decide what a particular solution might look like. Since the right
side is a constant times 2n, we suppose one solution might be a constant
times 2n and so we put an = A2n into the recurrence relation and see
what A will have to be:

A2n −A2n−1 − 6A2n−2 = (4)2n =⇒ −A = 4 =⇒ A = −4.

This gives us the particular solution:

a(p)n = −(4)2n.
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The general solution is then an = a
(h)
n + a

(p)
n = C13

n + C2(−2)n − (4)2n.

Now we apply the initial conditions

a0 = 1 = C1 + C2 − 4 and a1 = 2 = 3C1 − 2C2 − 8

This has solutions C1 = 4 and C2 = 1 for a completed solution:

an = (4)3n + (−2)n − (4)2n.

A snag in the method

Consider the recurrence relation an − an−1 − 2an−2 = (3)2n, a0 = 0,
a1 = 1. If we tried the same particular solution: an = A2n the same
process would give us 0A = 3, which is impossible for any A.
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What goes wrong here is that the homogeneous solution:

a(h)n = C12
n + C2(−1)n

shows that A2n is a solution of the homogeneous equation and so will
always produce 0 and never (3)2n.

In cases like this we multiply the
proposed solution A2n by n and try an = An2n.

Putting this in the recurrence relation gives

An2n −A(n− 1)2n−1 − 2A(n− 2)2n−2 = (3)2n =⇒ (3/2)A = 3

This yelds A = 2 and so, a
(p)
n = 2n2n. Then, the general solution is

an = C12
n + C2(−1)n + 2n2n.

Applying the initial conditions to this:

a0 = 0 = C1 + C2 + 0 and a1 = 1 = 2C1 − C2 + 4

we get C1 = −1 and C2 = 1 for a complete solution:

an = −2n + (−1)n + 2n2n.
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Computations in Zn

Zn is the set {0, 1, . . . , n− 1}. We make it a ring by giving it two
operations we call addition + and multiplication ·, defined as follows.

m+ k = (m+ k mod n) and m · k = (mk mod n)

For example, in Z6 we have the following operation tables:

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

· 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

12 / 1



In any ring −x is that element which when added to x produces 0. In Z6,
2 + 4 = (6 mod 6) = 0 so −2 = 4. Similarly −5 = 1 and −3 = 3.

If an element u in a ring R satisfies u · x = x · u = x for all elements x in
R, then u is called a unity and we say R is a ring with unity . All Zn are
rings with unity and 1 is the unity.

For a ring R with unity u, an element x is called a unit if there is an
element y in R that satisfies x · y = y · x = u. We call y the inverse of x
and denote it by x−1.

In Z6 only the elements 1 and 5 are units with 1−1 = 1 and 5−1 = 5. In
Z7, all the elements except 0 are units and

1−1 = 1, 2−1 = 4, 3−1 = 5, 4−1 = 2, 5−1 = 3, 6−1 = 6.
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You will be expected to do any computations in any of the rings Zn.

For
example, in Z19.

7+13+4 ·11 = 1+6 = 7, or 4 ·7 ·3 = 9 ·3 = 8, or −7 = 12, or 4−1 = 5.

We know that an element k of Zn is a proper zero divisor if it is not 0 and
gcd(n, k) > 1. That is, there is an integer larger than 1 that evenly divides
both k and n. All other elements, those that satisfy gcd(n, k) = 1, are
units.

For example, in Z12 the proper zero divisors are 2, 3, 4, 6, 8, 9, 10 and the
units are 1, 5, 7, 11. Notice that 0 is not in either list. You will be expected
to be able to list these for any not-too-large Zn.
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We have a formula for the number of units in Zn, if n can be completely
factored into primes.

The number of units in Zn is

ϕ(n) = n

(
p1 − 1

p1

)(
p2 − 1

p2

)
· · ·

continuing through all the different, prime divisors p1, p2, . . . of n. For
example, because 2100 = 22 · 3 · 52 · 7, the number of units in Z2100 is

ϕ(2100) = 2100

(
1

2

)(
2

3

)(
4

5

)(
6

7

)
=

(2100)(1)(2)(4)(6)

(2)(3)(5)(7)
= 480

The number of proper zero divisors is one less than everything else
(because 0 is neither a unit nor a proper zero divisor). That is,
n− ϕ(n)− 1.

For Z2100 there are 2100− 480− 1 = 1619 proper zero divisors. You will
be expected to do this for any Zn if I give you the factorization of n.
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Finally, you should be able to find the inverse of any element in any Zn

using the Euclidean algorithm.

For example, find 101−1 in the ring Z409. The Euclidean algorithm gives{
409 = 4(101) + 5

101 = 20(5) + 1
or

{
n = 4k + r1

k = 20r1 + r2

where n = 409, k = 101, r1 = 5 and r2 = 1. Using r1 = n− 4k from the
top equation in the bottom equation:

k = 20(n− 4k) + r2

k = 20n− 80k + r2.

Solving for r2: r2 = 81k − 20n. Putting the actual values back:
1 = 81(101)− 20(409). This tells us that, in the ring Z409, 1 = 81 · 101
and so (101)−1 = 81.
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