The Rings \mathbb{Z}_{n}

Daniel H. Luecking

October 20, 2023

A couple of examples of finding inverses. Find the inverse of 100 in the ring \mathbb{Z}_{711}. Here's the Euclidean algorithm:

$$
\begin{aligned}
& 711=7(100)+11 \\
& 100=9(11)+1
\end{aligned}
$$

A couple of examples of finding inverses. Find the inverse of 100 in the ring \mathbb{Z}_{711}. Here's the Euclidean algorithm:

$$
\begin{aligned}
& 711=7(100)+11 \\
& 100=9(11)+1
\end{aligned}
$$

So $\operatorname{gcd}(711,100)=1$ and we know that 100 is invertible.

A couple of examples of finding inverses. Find the inverse of 100 in the ring \mathbb{Z}_{711}. Here's the Euclidean algorithm:

$$
\begin{aligned}
& 711=7(100)+11 \\
& 100=9(11)+1
\end{aligned}
$$

So $\operatorname{gcd}(711,100)=1$ and we know that 100 is invertible. With $n=711$, $k=100, r_{1}=11$ and $r_{2}=1$:

$$
\begin{aligned}
& n=7 k+r_{1} \\
& k=9 r_{1}+r_{2}
\end{aligned}
$$

A couple of examples of finding inverses. Find the inverse of 100 in the ring \mathbb{Z}_{711}. Here's the Euclidean algorithm:

$$
\begin{aligned}
& 711=7(100)+11 \\
& 100=9(11)+1
\end{aligned}
$$

So $\operatorname{gcd}(711,100)=1$ and we know that 100 is invertible. With $n=711$, $k=100, r_{1}=11$ and $r_{2}=1$:

$$
\begin{aligned}
& n=7 k+r_{1} \\
& k=9 r_{1}+r_{2}
\end{aligned}
$$

we can eliminate r_{1} by inserting its value $(n-7 k)$ in the second equation:

$$
k=9(n-7 k)+r_{2} \text { or } r_{2}=64 k-9 n \text { or } 1=64(100)-9(711)
$$

A couple of examples of finding inverses. Find the inverse of 100 in the ring \mathbb{Z}_{711}. Here's the Euclidean algorithm:

$$
\begin{aligned}
& 711=7(100)+11 \\
& 100=9(11)+1
\end{aligned}
$$

So $\operatorname{gcd}(711,100)=1$ and we know that 100 is invertible. With $n=711$, $k=100, r_{1}=11$ and $r_{2}=1$:

$$
\begin{aligned}
& n=7 k+r_{1} \\
& k=9 r_{1}+r_{2}
\end{aligned}
$$

we can eliminate r_{1} by inserting its value $(n-7 k)$ in the second equation:

$$
k=9(n-7 k)+r_{2} \text { or } r_{2}=64 k-9 n \text { or } 1=64(100)-9(711)
$$

This tells us that $64 \cdot 100=1$ in \mathbb{Z}_{711} so, $100^{-1}=64$.

Lets take the same ring, \mathbb{Z}_{711} and find the inverse of 101 .

$$
\begin{aligned}
& 711=7(101)+4 \\
& 101=25(4) \quad+1
\end{aligned}
$$

Lets take the same ring, \mathbb{Z}_{711} and find the inverse of 101 .

$$
\begin{aligned}
& 711=7(101)+4 \\
& 101=25(4) \quad+1
\end{aligned}
$$

So $\operatorname{gcd}(711,101)=1$ and we know that 101 is invertible.

Lets take the same ring, \mathbb{Z}_{711} and find the inverse of 101 .

$$
\begin{aligned}
& 711=7(101)+4 \\
& 101=25(4) \quad+1
\end{aligned}
$$

So $\operatorname{gcd}(711,101)=1$ and we know that 101 is invertible. We can eliminate the intermediate remainder 4 by substituting $4=(711)-7(101)$ into the second equation:

$$
\begin{aligned}
(101) & =25((711)-7(101))+1 \\
& =25(711)-175(101)+1 \\
1 & =176(101)-25(711)
\end{aligned}
$$

Lets take the same ring, \mathbb{Z}_{711} and find the inverse of 101 .

$$
\begin{aligned}
& 711=7(101)+4 \\
& 101=25(4) \quad+1
\end{aligned}
$$

So $\operatorname{gcd}(711,101)=1$ and we know that 101 is invertible. We can eliminate the intermediate remainder 4 by substituting $4=(711)-7(101)$ into the second equation:

$$
\begin{aligned}
(101) & =25((711)-7(101))+1 \\
& =25(711)-175(101)+1 \\
1 & =176(101)-25(711)
\end{aligned}
$$

This tells us that $176 \cdot 101=1$ in \mathbb{Z}_{711} so, $101^{-1}=176$.

Counting units

Counting how many units \mathbb{Z}_{n} has is the same as counting the number of integers k between 1 and n that satisfy $\operatorname{gcd}(n, k)=1$.

Counting units

Counting how many units \mathbb{Z}_{n} has is the same as counting the number of integers k between 1 and n that satisfy $\operatorname{gcd}(n, k)=1$. This was first accomplished by Euler, who denoted the number by $\phi(n)$. Nowadays, ϕ is called Euler's totient function or the Euler ϕ-function.

Counting units

Counting how many units \mathbb{Z}_{n} has is the same as counting the number of integers k between 1 and n that satisfy $\operatorname{gcd}(n, k)=1$. This was first accomplished by Euler, who denoted the number by $\phi(n)$. Nowadays, ϕ is called Euler's totient function or the Euler ϕ-function.
That is, $\phi(n)$ is the number of units in \mathbb{Z}_{n} or the number of k with $1 \leq k \leq n$ such that $\operatorname{gcd}(n, k)=1$.

Counting units

Counting how many units \mathbb{Z}_{n} has is the same as counting the number of integers k between 1 and n that satisfy $\operatorname{gcd}(n, k)=1$. This was first accomplished by Euler, who denoted the number by $\phi(n)$. Nowadays, ϕ is called Euler's totient function or the Euler ϕ-function.
That is, $\phi(n)$ is the number of units in \mathbb{Z}_{n} or the number of k with $1 \leq k \leq n$ such that $\operatorname{gcd}(n, k)=1$.
If we know the prime factorization of n there is a relatively simple formula for $\phi(n)$. The first thing we remark is that if d evenly divides both k and n, then any prime factor of d also does so.

So, if we want to eliminate numbers with $\operatorname{gcd}(n, k)>1$ we only need to test primes. In fact we only need to test primes that divide n.

So, if we want to eliminate numbers with $\operatorname{gcd}(n, k)>1$ we only need to test primes. In fact we only need to test primes that divide n.
Suppose p_{1}, p_{2}, p_{3} are all the prime divisors of n. Then we want to count how many integers from 1 to n do not satisfy any of the following conditions

So, if we want to eliminate numbers with $\operatorname{gcd}(n, k)>1$ we only need to test primes. In fact we only need to test primes that divide n.
Suppose p_{1}, p_{2}, p_{3} are all the prime divisors of n. Then we want to count how many integers from 1 to n do not satisfy any of the following conditions
c_{1} : divisible by p_{1}
c_{2} : divisible by p_{2}
c_{3} : divisible by p_{3}

So, if we want to eliminate numbers with $\operatorname{gcd}(n, k)>1$ we only need to test primes. In fact we only need to test primes that divide n.
Suppose p_{1}, p_{2}, p_{3} are all the prime divisors of n. Then we want to count how many integers from 1 to n do not satisfy any of the following conditions
c_{1} : divisible by p_{1}
c_{2} : divisible by p_{2}
c_{3} : divisible by p_{3}
So we need to process an inclusion/exclusion problem:

So, if we want to eliminate numbers with $\operatorname{gcd}(n, k)>1$ we only need to test primes. In fact we only need to test primes that divide n.
Suppose p_{1}, p_{2}, p_{3} are all the prime divisors of n. Then we want to count how many integers from 1 to n do not satisfy any of the following conditions
c_{1} : divisible by p_{1}
c_{2} : divisible by p_{2}
c_{3} : divisible by p_{3}
So we need to process an inclusion/exclusion problem: $N=n$,

So, if we want to eliminate numbers with $\operatorname{gcd}(n, k)>1$ we only need to test primes. In fact we only need to test primes that divide n.
Suppose p_{1}, p_{2}, p_{3} are all the prime divisors of n. Then we want to count how many integers from 1 to n do not satisfy any of the following conditions
c_{1} : divisible by p_{1}
c_{2} : divisible by p_{2}
c_{3} : divisible by p_{3}
So we need to process an inclusion/exclusion problem: $N=n$, $N\left(c_{1}\right)=n / p_{1}$,

So, if we want to eliminate numbers with $\operatorname{gcd}(n, k)>1$ we only need to test primes. In fact we only need to test primes that divide n.
Suppose p_{1}, p_{2}, p_{3} are all the prime divisors of n. Then we want to count how many integers from 1 to n do not satisfy any of the following conditions
c_{1} : divisible by p_{1}
c_{2} : divisible by p_{2}
c_{3} : divisible by p_{3}
So we need to process an inclusion/exclusion problem: $N=n$, $N\left(c_{1}\right)=n / p_{1}, N\left(c_{2}\right)=n / p_{2}$,

So, if we want to eliminate numbers with $\operatorname{gcd}(n, k)>1$ we only need to test primes. In fact we only need to test primes that divide n.
Suppose p_{1}, p_{2}, p_{3} are all the prime divisors of n. Then we want to count how many integers from 1 to n do not satisfy any of the following conditions
c_{1} : divisible by p_{1}
c_{2} : divisible by p_{2}
c_{3} : divisible by p_{3}
So we need to process an inclusion/exclusion problem: $N=n$, $N\left(c_{1}\right)=n / p_{1}, N\left(c_{2}\right)=n / p_{2}, N\left(c_{3}\right)=n / p_{3}$,

So, if we want to eliminate numbers with $\operatorname{gcd}(n, k)>1$ we only need to test primes. In fact we only need to test primes that divide n.
Suppose p_{1}, p_{2}, p_{3} are all the prime divisors of n. Then we want to count how many integers from 1 to n do not satisfy any of the following conditions
c_{1} : divisible by p_{1}
c_{2} : divisible by p_{2}
c_{3} : divisible by p_{3}
So we need to process an inclusion/exclusion problem: $N=n$, $N\left(c_{1}\right)=n / p_{1}, N\left(c_{2}\right)=n / p_{2}, N\left(c_{3}\right)=n / p_{3}$, So,

$$
S_{1}=n\left(\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}\right) .
$$

Continuing: The numbers that satisfy both c_{1} and c_{2}, those divisible by both p_{1} and p_{2} must be divisible by $p_{1} p_{2}$

Continuing: The numbers that satisfy both c_{1} and c_{2}, those divisible by both p_{1} and p_{2} must be divisible by $p_{1} p_{2}$ and there are $N\left(c_{1} c_{2}\right)=n /\left(p_{1} p_{2}\right)$ of those.

Continuing: The numbers that satisfy both c_{1} and c_{2}, those divisible by both p_{1} and p_{2} must be divisible by $p_{1} p_{2}$ and there are $N\left(c_{1} c_{2}\right)=n /\left(p_{1} p_{2}\right)$ of those. Similarly, $N\left(c_{1} c_{3}\right)=n /\left(p_{1} p_{3}\right)$, $N\left(c_{2} c_{3}\right)=n /\left(p_{2} p_{3}\right)$

Continuing: The numbers that satisfy both c_{1} and c_{2}, those divisible by both p_{1} and p_{2} must be divisible by $p_{1} p_{2}$ and there are $N\left(c_{1} c_{2}\right)=n /\left(p_{1} p_{2}\right)$ of those. Similarly, $N\left(c_{1} c_{3}\right)=n /\left(p_{1} p_{3}\right)$, $N\left(c_{2} c_{3}\right)=n /\left(p_{2} p_{3}\right)$ and so,

$$
S_{2}=n\left(\frac{1}{p_{1} p_{2}}+\frac{1}{p_{1} p_{3}}+\frac{1}{p_{2} p_{3}}\right) .
$$

Continuing: The numbers that satisfy both c_{1} and c_{2}, those divisible by both p_{1} and p_{2} must be divisible by $p_{1} p_{2}$ and there are $N\left(c_{1} c_{2}\right)=n /\left(p_{1} p_{2}\right)$ of those. Similarly, $N\left(c_{1} c_{3}\right)=n /\left(p_{1} p_{3}\right)$, $N\left(c_{2} c_{3}\right)=n /\left(p_{2} p_{3}\right)$ and so,

$$
S_{2}=n\left(\frac{1}{p_{1} p_{2}}+\frac{1}{p_{1} p_{3}}+\frac{1}{p_{2} p_{3}}\right) .
$$

and lastly

$$
S_{3}=n\left(\frac{1}{p_{1} p_{2} p_{3}}\right)
$$

Continuing: The numbers that satisfy both c_{1} and c_{2}, those divisible by both p_{1} and p_{2} must be divisible by $p_{1} p_{2}$ and there are $N\left(c_{1} c_{2}\right)=n /\left(p_{1} p_{2}\right)$ of those. Similarly, $N\left(c_{1} c_{3}\right)=n /\left(p_{1} p_{3}\right)$, $N\left(c_{2} c_{3}\right)=n /\left(p_{2} p_{3}\right)$ and so,

$$
S_{2}=n\left(\frac{1}{p_{1} p_{2}}+\frac{1}{p_{1} p_{3}}+\frac{1}{p_{2} p_{3}}\right) .
$$

and lastly

$$
S_{3}=n\left(\frac{1}{p_{1} p_{2} p_{3}}\right)
$$

Putting these together

$$
\begin{aligned}
N\left(\overline{c_{1}} \overline{c_{2}} \overline{c_{3}}\right) & =n\left(1-\frac{1}{p_{1}}-\frac{1}{p_{2}}-\frac{1}{p_{3}}+\frac{1}{p_{1} p_{2}}+\frac{1}{p_{1} p_{3}}+\frac{1}{p_{2} p_{3}}-\frac{1}{p_{1} p_{2} p_{3}}\right) \\
& =n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right)\left(1-\frac{1}{p_{3}}\right)
\end{aligned}
$$

All that was for 3 prime factors.

All that was for 3 prime factors. The formula for any number of primes is: if p_{1}, p_{2}, \ldots are the different primes that divide n then

$$
\phi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots=n\left(\frac{p_{1}-1}{p_{1}}\right)\left(\frac{p_{2}-1}{p_{2}}\right) \cdots
$$

All that was for 3 prime factors. The formula for any number of primes is: if p_{1}, p_{2}, \ldots are the different primes that divide n then

$$
\phi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots=n\left(\frac{p_{1}-1}{p_{1}}\right)\left(\frac{p_{2}-1}{p_{2}}\right) \cdots
$$

In particular, if p is a prime number then $\phi(p)=p(1-1 / p)=p-1$, $\phi\left(p^{2}\right)=p^{2}(1-1 / p)=p(p-1)$, etc.

All that was for 3 prime factors. The formula for any number of primes is: if p_{1}, p_{2}, \ldots are the different primes that divide n then

$$
\phi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots=n\left(\frac{p_{1}-1}{p_{1}}\right)\left(\frac{p_{2}-1}{p_{2}}\right) \cdots
$$

In particular, if p is a prime number then $\phi(p)=p(1-1 / p)=p-1$, $\phi\left(p^{2}\right)=p^{2}(1-1 / p)=p(p-1)$, etc.
Some examples. $90=2\left(3^{2}\right) 5$ so the prime divisors are 2,3 , and 5 .

All that was for 3 prime factors. The formula for any number of primes is: if p_{1}, p_{2}, \ldots are the different primes that divide n then

$$
\phi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots=n\left(\frac{p_{1}-1}{p_{1}}\right)\left(\frac{p_{2}-1}{p_{2}}\right) \cdots
$$

In particular, if p is a prime number then $\phi(p)=p(1-1 / p)=p-1$, $\phi\left(p^{2}\right)=p^{2}(1-1 / p)=p(p-1)$, etc.
Some examples. $90=2\left(3^{2}\right) 5$ so the prime divisors are 2,3 , and 5 . Then

$$
\begin{aligned}
\phi(90) & =90\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right) \\
& =2\left(3^{2}\right) 5\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\left(\frac{4}{5}\right) \\
& =3(1)(2)(4)=24
\end{aligned}
$$

Another example: find $\phi(2200)$. Since $2200=2^{3} 5^{2} 11$ we get

$$
\begin{aligned}
\phi(2200) & =2^{3} 5^{2} 11\left(\frac{1}{2}\right)\left(\frac{4}{5}\right)\left(\frac{10}{11}\right) \\
& =2^{2} 5(1)(4)(10)=800
\end{aligned}
$$

Another example: find $\phi(2200)$. Since $2200=2^{3} 5^{2} 11$ we get

$$
\begin{aligned}
\phi(2200) & =2^{3} 5^{2} 11\left(\frac{1}{2}\right)\left(\frac{4}{5}\right)\left(\frac{10}{11}\right) \\
& =2^{2} 5(1)(4)(10)=800
\end{aligned}
$$

Two final examples: $\phi(100)=100(1 / 2)(4 / 5)=40$. From $1155=3(5)(7)(11)$ we have $\phi(1155)=1155(2 / 3)(4 / 5)(6 / 7)(10 / 11)=480$.

Another example: find $\phi(2200)$. Since $2200=2^{3} 5^{2} 11$ we get

$$
\begin{aligned}
\phi(2200) & =2^{3} 5^{2} 11\left(\frac{1}{2}\right)\left(\frac{4}{5}\right)\left(\frac{10}{11}\right) \\
& =2^{2} 5(1)(4)(10)=800
\end{aligned}
$$

Two final examples: $\phi(100)=100(1 / 2)(4 / 5)=40$. From $1155=3(5)(7)(11)$ we have $\phi(1155)=1155(2 / 3)(4 / 5)(6 / 7)(10 / 11)=480$.
Counting proper zero divisors
Because every element of \mathbb{Z}_{n} is either 0 or a unit or a proper zero divisor, there must be $n-\phi(n)-1$ proper zero divisors.

Another example: find $\phi(2200)$. Since $2200=2^{3} 5^{2} 11$ we get

$$
\begin{aligned}
\phi(2200) & =2^{3} 5^{2} 11\left(\frac{1}{2}\right)\left(\frac{4}{5}\right)\left(\frac{10}{11}\right) \\
& =2^{2} 5(1)(4)(10)=800
\end{aligned}
$$

Two final examples: $\phi(100)=100(1 / 2)(4 / 5)=40$. From $1155=3(5)(7)(11)$ we have $\phi(1155)=1155(2 / 3)(4 / 5)(6 / 7)(10 / 11)=480$.
Counting proper zero divisors
Because every element of \mathbb{Z}_{n} is either 0 or a unit or a proper zero divisor, there must be $n-\phi(n)-1$ proper zero divisors.
Since $\phi(90)=24$, the ring \mathbb{Z}_{90} has 24 units and $90-24-1=65$ proper zero divisors.

The ring \mathbb{Z}_{2200} has $\phi(2200)=800$ units and $2200-800-1=1399$ proper zero divisors.

The ring \mathbb{Z}_{2200} has $\phi(2200)=800$ units and $2200-800-1=1399$ proper zero divisors.
The ring \mathbb{Z}_{100} has $\phi(100)=40$ units and $100-40-1=59$ proper zero divisors.

The ring \mathbb{Z}_{2200} has $\phi(2200)=800$ units and $2200-800-1=1399$ proper zero divisors.
The ring \mathbb{Z}_{100} has $\phi(100)=40$ units and $100-40-1=59$ proper zero divisors.
The ring \mathbb{Z}_{1155} has $\phi(1155)=480$ units and $1155-480-1=674$ proper zero divisors.

The ring \mathbb{Z}_{2200} has $\phi(2200)=800$ units and $2200-800-1=1399$ proper zero divisors.
The ring \mathbb{Z}_{100} has $\phi(100)=40$ units and $100-40-1=59$ proper zero divisors.
The ring \mathbb{Z}_{1155} has $\phi(1155)=480$ units and $1155-480-1=674$ proper zero divisors.
The ring \mathbb{Z}_{911} has $\phi(911)=910$ units and $911-910-1=0$ proper zero divisors. (911 is prime so $\phi(911)=911\left(1-\frac{1}{911}\right)=911-1=910$.)

One more way to create a new ring

One more way to create a new ring

Theorem
Suppose $(R,+\cdot)$ is a ring and $(Y,+, \cdot)$ is a set with operations of + and \cdot.

One more way to create a new ring

Theorem

Suppose $(R,+\cdot)$ is a ring and $(Y,+, \cdot)$ is a set with operations of + and \cdot. If there is a function h from R to Y such that

1. For every pair x, y in $R, h(x+y)=h(x)+h(y)$.

One more way to create a new ring

Theorem

Suppose $(R,+\cdot)$ is a ring and $(Y,+, \cdot)$ is a set with operations of + and \cdot. If there is a function h from R to Y such that

1. For every pair x, y in $R, h(x+y)=h(x)+h(y)$.
2. For every pair x, y in $R, h(x \cdot y)=h(x) \cdot h(y)$.

One more way to create a new ring

Theorem

Suppose $(R,+\cdot)$ is a ring and $(Y,+, \cdot)$ is a set with operations of + and \cdot. If there is a function h from R to Y such that

1. For every pair x, y in $R, h(x+y)=h(x)+h(y)$.
2. For every pair x, y in $R, h(x \cdot y)=h(x) \cdot h(y)$.
3. $Y=\{h(x): x \in R\}$. (We say h is 'onto' or 'surjective'.)

One more way to create a new ring

Theorem

Suppose $(R,+\cdot)$ is a ring and $(Y,+, \cdot)$ is a set with operations of + and \cdot. If there is a function h from R to Y such that

1. For every pair x, y in $R, h(x+y)=h(x)+h(y)$.
2. For every pair x, y in $R, h(x \cdot y)=h(x) \cdot h(y)$.
3. $Y=\{h(x): x \in R\}$. (We say h is 'onto' or 'surjective'.)

Then $(Y,+, \cdot)$ is also a ring.

One more way to create a new ring

Theorem

Suppose $(R,+\cdot)$ is a ring and $(Y,+, \cdot)$ is a set with operations of + and \cdot. If there is a function h from R to Y such that

1. For every pair x, y in $R, h(x+y)=h(x)+h(y)$.
2. For every pair x, y in $R, h(x \cdot y)=h(x) \cdot h(y)$.
3. $Y=\{h(x): x \in R\}$. (We say h is 'onto' or 'surjective'.)

Then $(Y,+, \cdot)$ is also a ring.
An example of this is the function from \mathbb{Z} to \mathbb{Z}_{n} defined by $h(x)=x \bmod n$. Checking the three conditions of the theorem is not particularly difficult.

One more way to create a new ring

Theorem

Suppose $(R,+\cdot)$ is a ring and $(Y,+, \cdot)$ is a set with operations of + and \cdot. If there is a function h from R to Y such that

1. For every pair x, y in $R, h(x+y)=h(x)+h(y)$.
2. For every pair x, y in $R, h(x \cdot y)=h(x) \cdot h(y)$.
3. $Y=\{h(x): x \in R\}$. (We say h is 'onto' or 'surjective'.)

Then $(Y,+, \cdot)$ is also a ring.
An example of this is the function from \mathbb{Z} to \mathbb{Z}_{n} defined by $h(x)=x \bmod n$. Checking the three conditions of the theorem is not particularly difficult.
Proving the theorem is maybe a little tricky but not particularly long. The first two conditions are the definition of h being a homomorphism.

