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A couple of examples of finding inverses. Find the inverse of 100 in the
ring Z711. Here’s the Euclidean algorithm:

711 = 7(100) + 11

100 = 9(11) + 1

So gcd(711, 100) = 1 and we know that 100 is invertible. With n = 711,
k = 100, r1 = 11 and r2 = 1:

n = 7k + r1

k = 9r1 + r2

we can eliminate r1 by inserting its value (n− 7k) in the second equation:

k = 9(n− 7k) + r2 or r2 = 64k − 9n or 1 = 64(100)− 9(711)

This tells us that 64 · 100 = 1 in Z711 so, 100−1 = 64.

2 / 1



A couple of examples of finding inverses. Find the inverse of 100 in the
ring Z711. Here’s the Euclidean algorithm:

711 = 7(100) + 11

100 = 9(11) + 1

So gcd(711, 100) = 1 and we know that 100 is invertible.

With n = 711,
k = 100, r1 = 11 and r2 = 1:

n = 7k + r1

k = 9r1 + r2

we can eliminate r1 by inserting its value (n− 7k) in the second equation:

k = 9(n− 7k) + r2 or r2 = 64k − 9n or 1 = 64(100)− 9(711)

This tells us that 64 · 100 = 1 in Z711 so, 100−1 = 64.

2 / 1



A couple of examples of finding inverses. Find the inverse of 100 in the
ring Z711. Here’s the Euclidean algorithm:

711 = 7(100) + 11

100 = 9(11) + 1

So gcd(711, 100) = 1 and we know that 100 is invertible. With n = 711,
k = 100, r1 = 11 and r2 = 1:

n = 7k + r1

k = 9r1 + r2

we can eliminate r1 by inserting its value (n− 7k) in the second equation:

k = 9(n− 7k) + r2 or r2 = 64k − 9n or 1 = 64(100)− 9(711)

This tells us that 64 · 100 = 1 in Z711 so, 100−1 = 64.

2 / 1



A couple of examples of finding inverses. Find the inverse of 100 in the
ring Z711. Here’s the Euclidean algorithm:

711 = 7(100) + 11

100 = 9(11) + 1

So gcd(711, 100) = 1 and we know that 100 is invertible. With n = 711,
k = 100, r1 = 11 and r2 = 1:

n = 7k + r1

k = 9r1 + r2

we can eliminate r1 by inserting its value (n− 7k) in the second equation:

k = 9(n− 7k) + r2 or r2 = 64k − 9n or 1 = 64(100)− 9(711)

This tells us that 64 · 100 = 1 in Z711 so, 100−1 = 64.

2 / 1



A couple of examples of finding inverses. Find the inverse of 100 in the
ring Z711. Here’s the Euclidean algorithm:

711 = 7(100) + 11

100 = 9(11) + 1

So gcd(711, 100) = 1 and we know that 100 is invertible. With n = 711,
k = 100, r1 = 11 and r2 = 1:

n = 7k + r1

k = 9r1 + r2

we can eliminate r1 by inserting its value (n− 7k) in the second equation:

k = 9(n− 7k) + r2 or r2 = 64k − 9n or 1 = 64(100)− 9(711)

This tells us that 64 · 100 = 1 in Z711 so, 100−1 = 64.

2 / 1



Lets take the same ring, Z711 and find the inverse of 101.

711 = 7(101) + 4

101 = 25(4) + 1

So gcd(711, 101) = 1 and we know that 101 is invertible. We can
eliminate the intermediate remainder 4 by substituting 4 = (711)− 7(101)
into the second equation:

(101) = 25((711)− 7(101)) + 1,

= 25(711)− 175(101) + 1, or

1 = 176(101)− 25(711)

This tells us that 176 · 101 = 1 in Z711 so, 101−1 = 176.
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Counting units

Counting how many units Zn has is the same as counting the number of
integers k between 1 and n that satisfy gcd(n, k) = 1.

This was first
accomplished by Euler, who denoted the number by ϕ(n). Nowadays, ϕ
is called Euler’s totient function or the Euler ϕ-function.

That is, ϕ(n) is the number of units in Zn or the number of k with
1 ≤ k ≤ n such that gcd(n, k) = 1.

If we know the prime factorization of n there is a relatively simple formula
for ϕ(n). The first thing we remark is that if d evenly divides both k and
n, then any prime factor of d also does so.
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So, if we want to eliminate numbers with gcd(n, k) > 1 we only need to
test primes. In fact we only need to test primes that divide n.

Suppose p1, p2, p3 are all the prime divisors of n. Then we want to count
how many integers from 1 to n do not satisfy any of the following
conditions

c1: divisible by p1

c2: divisible by p2

c3: divisible by p3

So we need to process an inclusion/exclusion problem: N = n,
N(c1) = n/p1, N(c2) = n/p2, N(c3) = n/p3, So,

S1 = n

(
1

p1
+

1

p2
+

1

p3

)
.
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Continuing: The numbers that satisfy both c1 and c2, those divisible by
both p1 and p2 must be divisible by p1p2

and there are
N(c1c2) = n/(p1p2) of those. Similarly, N(c1c3) = n/(p1p3),
N(c2c3) = n/(p2p3) and so,

S2 = n

(
1

p1p2
+

1

p1p3
+

1

p2p3

)
.

and lastly

S3 = n

(
1

p1p2p3

)
.

Putting these together

N(c1c2c3) = n

(
1− 1

p1
− 1

p2
− 1

p3
+

1

p1p2
+

1

p1p3
+

1

p2p3
− 1

p1p2p3

)
= n

(
1− 1

p1

)(
1− 1

p2

)(
1− 1

p3

)
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All that was for 3 prime factors.

The formula for any number of primes is:
if p1, p2, . . . are the different primes that divide n then

ϕ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · · = n

(
p1 − 1

p1

)(
p2 − 1

p2

)
· · ·

In particular, if p is a prime number then ϕ(p) = p(1− 1/p) = p− 1,
ϕ(p2) = p2(1− 1/p) = p(p− 1), etc.

Some examples. 90 = 2(32)5 so the prime divisors are 2, 3, and 5. Then

ϕ(90) = 90

(
1− 1

2

)(
1− 1

3

)(
1− 1

5

)
= 2(32)5

(
1

2

)(
2

3

)(
4

5

)
= 3(1)(2)(4) = 24
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Another example: find ϕ(2200). Since 2200 = 235211 we get

ϕ(2200) = 235211

(
1

2

)(
4

5

)(
10

11

)
= 225(1)(4)(10) = 800.

Two final examples: ϕ(100) = 100(1/2)(4/5) = 40. From
1155 = 3(5)(7)(11) we have
ϕ(1155) = 1155(2/3)(4/5)(6/7)(10/11) = 480.

Counting proper zero divisors

Because every element of Zn is either 0 or a unit or a proper zero divisor,
there must be n− ϕ(n)− 1 proper zero divisors.

Since ϕ(90) = 24, the ring Z90 has 24 units and 90− 24− 1 = 65 proper
zero divisors.
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there must be n− ϕ(n)− 1 proper zero divisors.

Since ϕ(90) = 24, the ring Z90 has 24 units and 90− 24− 1 = 65 proper
zero divisors.
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The ring Z2200 has ϕ(2200) = 800 units and 2200− 800− 1 = 1399
proper zero divisors.

The ring Z100 has ϕ(100) = 40 units and 100− 40− 1 = 59 proper zero
divisors.
The ring Z1155 has ϕ(1155) = 480 units and 1155− 480− 1 = 674 proper
zero divisors.
The ring Z911 has ϕ(911) = 910 units and 911− 910− 1 = 0 proper zero

divisors. (911 is prime so ϕ(911) = 911

(
1− 1

911

)
= 911− 1 = 910.)
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One more way to create a new ring

Theorem

Suppose (R,+.·) is a ring and (Y,+, ·) is a set with operations of + and ·.
If there is a function h from R to Y such that

1. For every pair x, y in R, h(x+ y) = h(x) + h(y).

2. For every pair x, y in R, h(x · y) = h(x) · h(y).
3. Y = {h(x) : x ∈ R}. (We say h is ‘onto’ or ‘surjective’.)

Then (Y,+, ·) is also a ring.

An example of this is the function from Z to Zn defined by
h(x) = x mod n. Checking the three conditions of the theorem is not
particularly difficult.

Proving the theorem is maybe a little tricky but not particularly long. The
first two conditions are the definition of h being a homomorphism.
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