The Rings \mathbb{Z}_{n}

Daniel H. Luecking

Oct 18, 2022

Product rings

If $\left(R_{1},+, \cdot\right)$ and $\left(R_{2},+, \cdot\right)$ are two rings then we can make a new ring out of $R_{1} \times R_{2}=\left\{(x, y): x \in R_{1}\right.$ and $\left.y \in R_{2}\right\}$,

Product rings

If $\left(R_{1},+, \cdot\right)$ and $\left(R_{2},+, \cdot\right)$ are two rings then we can make a new ring out of $R_{1} \times R_{2}=\left\{(x, y): x \in R_{1}\right.$ and $\left.y \in R_{2}\right\}$, by defining

$$
(x, y)+(v, w)=(x+v, y+w) \text { and }(x, y) \cdot(v, w)=(x \cdot v, y \cdot w)
$$

Product rings

If $\left(R_{1},+, \cdot\right)$ and $\left(R_{2},+, \cdot\right)$ are two rings then we can make a new ring out of $R_{1} \times R_{2}=\left\{(x, y): x \in R_{1}\right.$ and $\left.y \in R_{2}\right\}$, by defining

$$
(x, y)+(v, w)=(x+v, y+w) \text { and }(x, y) \cdot(v, w)=(x \cdot v, y \cdot w)
$$

The zero of $R_{1} \times R_{2}$ is $(0,0)$. Note that $(x, 0) \cdot(0, w)=(0,0)$, so $R_{1} \times R_{2}$ almost always has proper zero divisors.

Matrix rings

If R is a ring and n is any positive integer we can create a new ring called $M_{n}(R)$ whose elements are all the $n \times n$ matrices whose entries are elements of R.

Product rings

If $\left(R_{1},+, \cdot\right)$ and $\left(R_{2},+, \cdot\right)$ are two rings then we can make a new ring out of $R_{1} \times R_{2}=\left\{(x, y): x \in R_{1}\right.$ and $\left.y \in R_{2}\right\}$, by defining

$$
(x, y)+(v, w)=(x+v, y+w) \text { and }(x, y) \cdot(v, w)=(x \cdot v, y \cdot w)
$$

The zero of $R_{1} \times R_{2}$ is $(0,0)$. Note that $(x, 0) \cdot(0, w)=(0,0)$, so $R_{1} \times R_{2}$ almost always has proper zero divisors.

Matrix rings

If R is a ring and n is any positive integer we can create a new ring called $M_{n}(R)$ whose elements are all the $n \times n$ matrices whose entries are elements of R. The zero of $M_{n}(R)$ is the matrix with all zero entries.

Product rings

If $\left(R_{1},+, \cdot\right)$ and $\left(R_{2},+, \cdot\right)$ are two rings then we can make a new ring out of $R_{1} \times R_{2}=\left\{(x, y): x \in R_{1}\right.$ and $\left.y \in R_{2}\right\}$, by defining

$$
(x, y)+(v, w)=(x+v, y+w) \text { and }(x, y) \cdot(v, w)=(x \cdot v, y \cdot w)
$$

The zero of $R_{1} \times R_{2}$ is $(0,0)$. Note that $(x, 0) \cdot(0, w)=(0,0)$, so $R_{1} \times R_{2}$ almost always has proper zero divisors.

Matrix rings

If R is a ring and n is any positive integer we can create a new ring called $M_{n}(R)$ whose elements are all the $n \times n$ matrices whose entries are elements of R. The zero of $M_{n}(R)$ is the matrix with all zero entries. Even if R is commutative, $M_{n}(R)$ almost never is if $n>1$. If R has a unity, then so does $M_{n}(R) . M_{n}(R)$ always has proper zero divisors when $n>1$ unless $R=\{0\}$.

The rings \mathbb{Z}_{n}
We want to take a closer look at \mathbb{Z}_{n} and answer some questions about it.

The rings \mathbb{Z}_{n}

We want to take a closer look at \mathbb{Z}_{n} and answer some questions about it.

1. How can we tell which elements of \mathbb{Z}_{n} are units?

The rings \mathbb{Z}_{n}

We want to take a closer look at \mathbb{Z}_{n} and answer some questions about it. 1. How can we tell which elements of \mathbb{Z}_{n} are units?
2. If k is a unit in \mathbb{Z}_{n} how can we find its inverse?

The rings \mathbb{Z}_{n}

We want to take a closer look at \mathbb{Z}_{n} and answer some questions about it.

1. How can we tell which elements of \mathbb{Z}_{n} are units?
2. If k is a unit in \mathbb{Z}_{n} how can we find its inverse?
3. How many units does \mathbb{Z}_{n} have?

The rings \mathbb{Z}_{n}

We want to take a closer look at \mathbb{Z}_{n} and answer some questions about it. 1. How can we tell which elements of \mathbb{Z}_{n} are units?
2. If k is a unit in \mathbb{Z}_{n} how can we find its inverse?
3. How many units does \mathbb{Z}_{n} have?

Theorem

The nonzero elements in \mathbb{Z}_{n} are either proper zero divisors or units. They are proper zero divisors when they have a factor in common with n (apart from 1) and units if they have no such common factor.

The rings \mathbb{Z}_{n}

We want to take a closer look at \mathbb{Z}_{n} and answer some questions about it. 1. How can we tell which elements of \mathbb{Z}_{n} are units?
2. If k is a unit in \mathbb{Z}_{n} how can we find its inverse?
3. How many units does \mathbb{Z}_{n} have?

Theorem

The nonzero elements in \mathbb{Z}_{n} are either proper zero divisors or units. They are proper zero divisors when they have a factor in common with n (apart from 1) and units if they have no such common factor.

Definition

If k and n are two positive integers then a positive integer d is called a common divisor of k and n iff d evenly divides both k and n. The largest common divisor is denoted $\operatorname{gcd}(k, n)$.

Example: 1, 2, 3 and 6 are the only common divisors of 24 and 90 .

Example: 1, 2, 3 and 6 are the only common divisors of 24 and 90 . The easiest way to see this is to completely factor both:

$$
\begin{aligned}
& 24=2 \cdot 12=2 \cdot 2 \cdot 6=2 \cdot 2 \cdot 2 \cdot 3 \\
& 90=2 \cdot 45=2 \cdot 3 \cdot 15=2 \cdot 3 \cdot 3 \cdot 5
\end{aligned}
$$

Example: 1, 2, 3 and 6 are the only common divisors of 24 and 90 . The easiest way to see this is to completely factor both:

$$
\begin{aligned}
& 24=2 \cdot 12=2 \cdot 2 \cdot 6=2 \cdot 2 \cdot 2 \cdot 3 \\
& 90=2 \cdot 45=2 \cdot 3 \cdot 15=2 \cdot 3 \cdot 3 \cdot 5
\end{aligned}
$$

If we have factored both numbers down to primes, we can get the gcd by multiplying together the smallest power of all primes that appears in both. Thus $24=2^{3} \cdot 3^{1}$ while $90=2^{1} 3^{2} 5^{1}$.

Example: 1, 2, 3 and 6 are the only common divisors of 24 and 90 . The easiest way to see this is to completely factor both:

$$
\begin{aligned}
& 24=2 \cdot 12=2 \cdot 2 \cdot 6=2 \cdot 2 \cdot 2 \cdot 3 \\
& 90=2 \cdot 45=2 \cdot 3 \cdot 15=2 \cdot 3 \cdot 3 \cdot 5
\end{aligned}
$$

If we have factored both numbers down to primes, we can get the gcd by multiplying together the smallest power of all primes that appears in both. Thus $24=2^{3} \cdot 3^{1}$ while $90=2^{1} 3^{2} 5^{1}$. Since 2 appears in both factorizations with powers 2^{1} and 2^{3}, the smaller is 2^{1}. Similarly, 3 appears as 3^{1} and 3^{2}, with the smaller being 3^{1}. Then $\operatorname{gcd}(24,90)=2^{1} \cdot 3^{1}=6$.

Example: 1, 2, 3 and 6 are the only common divisors of 24 and 90 . The easiest way to see this is to completely factor both:

$$
\begin{aligned}
& 24=2 \cdot 12=2 \cdot 2 \cdot 6=2 \cdot 2 \cdot 2 \cdot 3 \\
& 90=2 \cdot 45=2 \cdot 3 \cdot 15=2 \cdot 3 \cdot 3 \cdot 5
\end{aligned}
$$

If we have factored both numbers down to primes, we can get the gcd by multiplying together the smallest power of all primes that appears in both. Thus $24=2^{3} \cdot 3^{1}$ while $90=2^{1} 3^{2} 5^{1}$. Since 2 appears in both factorizations with powers 2^{1} and 2^{3}, the smaller is 2^{1}. Similarly, 3 appears as 3^{1} and 3^{2}, with the smaller being 3^{1}. Then $\operatorname{gcd}(24,90)=2^{1} \cdot 3^{1}=6$.
This method requires factoring completely both numbers. This can be rather difficult when the numbers are large. For example, finding $\operatorname{gcd}(37517,75058)$ is not so easy by this method.

Example: 1, 2, 3 and 6 are the only common divisors of 24 and 90 . The easiest way to see this is to completely factor both:

$$
\begin{aligned}
& 24=2 \cdot 12=2 \cdot 2 \cdot 6=2 \cdot 2 \cdot 2 \cdot 3 \\
& 90=2 \cdot 45=2 \cdot 3 \cdot 15=2 \cdot 3 \cdot 3 \cdot 5
\end{aligned}
$$

If we have factored both numbers down to primes, we can get the gcd by multiplying together the smallest power of all primes that appears in both. Thus $24=2^{3} \cdot 3^{1}$ while $90=2^{1} 3^{2} 5^{1}$. Since 2 appears in both factorizations with powers 2^{1} and 2^{3}, the smaller is 2^{1}. Similarly, 3 appears as 3^{1} and 3^{2}, with the smaller being 3^{1}. Then $\operatorname{gcd}(24,90)=2^{1} \cdot 3^{1}=6$.
This method requires factoring completely both numbers. This can be rather difficult when the numbers are large. For example, finding $\operatorname{gcd}(37517,75058)$ is not so easy by this method.
In fact, factoring large numbers is one of the hardest problems in computing (by 'large', I mean having thousands of bits in base 2).

The Euclidean Algorithm

Since computing gcd's is very important for applications, it is fortunate that there is a fast and easily programmable way to do it.

The Euclidean Algorithm

Since computing gcd's is very important for applications, it is fortunate that there is a fast and easily programmable way to do it.
Here is an example of finding a gcd by the Euclidean algorithm:

The Euclidean Algorithm

Since computing gcd's is very important for applications, it is fortunate that there is a fast and easily programmable way to do it.
Here is an example of finding a gcd by the Euclidean algorithm:
Finding $\operatorname{gcd}(195,36)$. We try to divide 195 by 36 . If this has no remainder we are done. But it has a remainder of 15 :

$$
195=5 \cdot 36+15
$$

The Euclidean Algorithm

Since computing gcd's is very important for applications, it is fortunate that there is a fast and easily programmable way to do it.
Here is an example of finding a gcd by the Euclidean algorithm:
Finding $\operatorname{gcd}(195,36)$. We try to divide 195 by 36 . If this has no remainder we are done. But it has a remainder of 15 :

$$
195=5 \cdot 36+15
$$

Any number that evenly divides both 195 and 36 must also evenly divide $15=195-5 \cdot 36$. So we try to find $\operatorname{gcd}(36,15)$.

The Euclidean Algorithm

Since computing gcd's is very important for applications, it is fortunate that there is a fast and easily programmable way to do it.
Here is an example of finding a gcd by the Euclidean algorithm:
Finding $\operatorname{gcd}(195,36)$. We try to divide 195 by 36 . If this has no remainder we are done. But it has a remainder of 15 :

$$
195=5 \cdot 36+15
$$

Any number that evenly divides both 195 and 36 must also evenly divide $15=195-5 \cdot 36$. So we try to find $\operatorname{gcd}(36,15)$. If we divide 36 by 15 :

$$
36=2 \cdot 15+6
$$

The Euclidean Algorithm

Since computing gcd's is very important for applications, it is fortunate that there is a fast and easily programmable way to do it.
Here is an example of finding a gcd by the Euclidean algorithm:
Finding $\operatorname{gcd}(195,36)$. We try to divide 195 by 36 . If this has no remainder we are done. But it has a remainder of 15 :

$$
195=5 \cdot 36+15
$$

Any number that evenly divides both 195 and 36 must also evenly divide $15=195-5 \cdot 36$. So we try to find $\operatorname{gcd}(36,15)$. If we divide 36 by 15 :

$$
36=2 \cdot 15+6
$$

By the same argument, we need only find $\operatorname{gcd}(15,6)$:

$$
15=2 \cdot 6+3
$$

The Euclidean Algorithm

Since computing gcd's is very important for applications, it is fortunate that there is a fast and easily programmable way to do it.
Here is an example of finding a gcd by the Euclidean algorithm:
Finding $\operatorname{gcd}(195,36)$. We try to divide 195 by 36 . If this has no remainder we are done. But it has a remainder of 15 :

$$
195=5 \cdot 36+15
$$

Any number that evenly divides both 195 and 36 must also evenly divide $15=195-5 \cdot 36$. So we try to find $\operatorname{gcd}(36,15)$. If we divide 36 by 15 :

$$
36=2 \cdot 15+6
$$

By the same argument, we need only find $\operatorname{gcd}(15,6)$:

$$
15=2 \cdot 6+3
$$

Finally, $\operatorname{gcd}(6,3)=3$ because 3 divides 6 evenly.

This tells us that
$3=\operatorname{gcd}(6,3)=\operatorname{gcd}(15,6)=\operatorname{gcd}(36,15)=\operatorname{gcd}(195,36)$.
Here is the whole process condensed:

$$
\begin{aligned}
195 & =5 \cdot 36+15 \\
36 & =2 \cdot 15+6 \\
15 & =2 \cdot 6+3 \\
6 & =2 \cdot 3+0
\end{aligned}
$$

This tells us that
$3=\operatorname{gcd}(6,3)=\operatorname{gcd}(15,6)=\operatorname{gcd}(36,15)=\operatorname{gcd}(195,36)$.
Here is the whole process condensed:

$$
\begin{aligned}
195 & =5 \cdot 36+15 \\
36 & =2 \cdot 15+6 \\
15 & =2 \cdot 6+3 \\
6 & =2 \cdot 3+0
\end{aligned}
$$

This process for finding $\operatorname{gcd}(n, k)$, with $k<n$, is guaranteed to end in less than $2 \log _{2} n$ steps. This means it is very efficient.

This tells us that
$3=\operatorname{gcd}(6,3)=\operatorname{gcd}(15,6)=\operatorname{gcd}(36,15)=\operatorname{gcd}(195,36)$.
Here is the whole process condensed:

$$
\begin{aligned}
195 & =5 \cdot 36+15 \\
36 & =2 \cdot 15+6 \\
15 & =2 \cdot 6+3 \\
6 & =2 \cdot 3+0
\end{aligned}
$$

This process for finding $\operatorname{gcd}(n, k)$, with $k<n$, is guaranteed to end in less than $2 \log _{2} n$ steps. This means it is very efficient.

Theorem

An element k of \mathbb{Z}_{n} is a unit if and only if $\operatorname{gcd}(n, k)=1$. It is a proper zero divisor if and only if it is not zero and $\operatorname{gcd}(n, k)>1$.

The second part is easy: Suppose $d>1$ and evenly divides both n and k.

The second part is easy: Suppose $d>1$ and evenly divides both n and k. That means there are positive integers m and j such that $n=m d$ and $k=j d$. Then $k m=(j d) m=j n$.

The second part is easy: Suppose $d>1$ and evenly divides both n and k. That means there are positive integers m and j such that $n=m d$ and $k=j d$. Then $k m=(j d) m=j n$. That is, in the operations of the ring $\mathbb{Z}_{n} k \cdot m=(k m) \bmod n=(n j) \bmod n=0$.

The second part is easy: Suppose $d>1$ and evenly divides both n and k. That means there are positive integers m and j such that $n=m d$ and $k=j d$. Then $k m=(j d) m=j n$. That is, in the operations of the ring $\mathbb{Z}_{n} k \cdot m=(k m) \bmod n=(n j) \bmod n=0$. Since $1<m<n$ we see that m is a nonzero element of \mathbb{Z}_{n} with $k \cdot m=0$, so if k is not zero, it must be a proper zero divisor in \mathbb{Z}_{n}.

The second part is easy: Suppose $d>1$ and evenly divides both n and k. That means there are positive integers m and j such that $n=m d$ and $k=j d$. Then $k m=(j d) m=j n$. That is, in the operations of the ring $\mathbb{Z}_{n} k \cdot m=(k m) \bmod n=(n j) \bmod n=0$. Since $1<m<n$ we see that m is a nonzero element of \mathbb{Z}_{n} with $k \cdot m=0$, so if k is not zero, it must be a proper zero divisor in \mathbb{Z}_{n}.
Let's illustrate the other half of the theorem. Consider finding the inverse of 7 in \mathbb{Z}_{73}. Lets first check that $\operatorname{gcd}(73,7)=1$:

$$
\begin{aligned}
73 & =10 \cdot 7+3 \\
7 & =2 \cdot 3+1 \\
3 & =3 \cdot 1+0
\end{aligned}
$$

That is $\operatorname{gcd}(73,7)=1$.

There is a basic theorem in number theory that the gcd of n and k can always be written as a combination $a n+b k$ with integers a and b.

There is a basic theorem in number theory that the gcd of n and k can always be written as a combination $a n+b k$ with integers a and b. To see this for our example let's set $n=73, k=7$ and name the remainders $r_{1}=3$ and $r_{2}=1$. Then the set of equations is

$$
\begin{aligned}
& n=10 k+r_{1} \\
& k=2 r_{1}+r_{2}
\end{aligned}
$$

There is a basic theorem in number theory that the gcd of n and k can always be written as a combination $a n+b k$ with integers a and b. To see this for our example let's set $n=73, k=7$ and name the remainders $r_{1}=3$ and $r_{2}=1$. Then the set of equations is

$$
\begin{aligned}
n & =10 k+r_{1} \\
k & =2 r_{1}+r_{2}
\end{aligned}
$$

We want to write r_{2} as a combination of n and k. All we have to do is eliminate r_{1} from the equations.

There is a basic theorem in number theory that the gcd of n and k can always be written as a combination $a n+b k$ with integers a and b. To see this for our example let's set $n=73, k=7$ and name the remainders $r_{1}=3$ and $r_{2}=1$. Then the set of equations is

$$
\begin{aligned}
n & =10 k+r_{1} \\
k & =2 r_{1}+r_{2}
\end{aligned}
$$

We want to write r_{2} as a combination of n and k. All we have to do is eliminate r_{1} from the equations. One way to do this is to solve the first equation for $r_{1}=n-10 k$ and put this in the second equation:

$$
k=2(n-10 k)+r_{2}
$$

There is a basic theorem in number theory that the gcd of n and k can always be written as a combination $a n+b k$ with integers a and b. To see this for our example let's set $n=73, k=7$ and name the remainders $r_{1}=3$ and $r_{2}=1$. Then the set of equations is

$$
\begin{aligned}
n & =10 k+r_{1} \\
k & =2 r_{1}+r_{2}
\end{aligned}
$$

We want to write r_{2} as a combination of n and k. All we have to do is eliminate r_{1} from the equations. One way to do this is to solve the first equation for $r_{1}=n-10 k$ and put this in the second equation:

$$
k=2(n-10 k)+r_{2}
$$

This leads to

$$
k=2 n-20 k+r_{2} \text { or } 21 k-2 n=r_{2}
$$

Since $r_{2}=1, k=7$ and $n=73$, this becomes $21(7)=2(73)+1$. This tells us that $21 \cdot 7=21(7) \bmod 73=1$. By definition, $7^{-1}=21$ in \mathbb{Z}_{73}.

Since $r_{2}=1, k=7$ and $n=73$, this becomes $21(7)=2(73)+1$. This tells us that $21 \cdot 7=21(7) \bmod 73=1$. By definition, $7^{-1}=21$ in \mathbb{Z}_{73}. We would check this by actually computing $21(7)=147$, then dividing that by 73 to get a quotient of 2 and a remainder of 1 .

Since $r_{2}=1, k=7$ and $n=73$, this becomes $21(7)=2(73)+1$. This tells us that $21 \cdot 7=21(7) \bmod 73=1$. By definition, $7^{-1}=21$ in \mathbb{Z}_{73}. We would check this by actually computing $21(7)=147$, then dividing that by 73 to get a quotient of 2 and a remainder of 1 .
These types of calculation always allow one to find the inverse of an element k of \mathbb{Z}_{n} if $\operatorname{gcd}(n, k)=1$.

Since $r_{2}=1, k=7$ and $n=73$, this becomes $21(7)=2(73)+1$. This tells us that $21 \cdot 7=21(7) \bmod 73=1$. By definition, $7^{-1}=21$ in \mathbb{Z}_{73}. We would check this by actually computing $21(7)=147$, then dividing that by 73 to get a quotient of 2 and a remainder of 1 .
These types of calculation always allow one to find the inverse of an element k of \mathbb{Z}_{n} if $\operatorname{gcd}(n, k)=1$.
Here's another example: Find the inverse of 34 in the ring \mathbb{Z}_{371} (or else prove it has no inverse).
Here's the Euclidean algorithm:

$$
\begin{aligned}
371 & =10 \cdot 34+31 \\
34 & =1 \cdot 31+3 \\
31 & =10 \cdot 3+1
\end{aligned}
$$

Since $r_{2}=1, k=7$ and $n=73$, this becomes $21(7)=2(73)+1$. This tells us that $21 \cdot 7=21(7) \bmod 73=1$. By definition, $7^{-1}=21$ in \mathbb{Z}_{73}. We would check this by actually computing $21(7)=147$, then dividing that by 73 to get a quotient of 2 and a remainder of 1 .
These types of calculation always allow one to find the inverse of an element k of \mathbb{Z}_{n} if $\operatorname{gcd}(n, k)=1$.
Here's another example: Find the inverse of 34 in the ring \mathbb{Z}_{371} (or else prove it has no inverse).
Here's the Euclidean algorithm:

$$
\begin{aligned}
371 & =10 \cdot 34+31 \\
34 & =1 \cdot 31+3 \\
31 & =10 \cdot 3+1
\end{aligned}
$$

We can skip the division by 1 because the remainder will always be 0 .

I like to write the modulus of our ring as n and the element we're testing as k, and then the remainders as r_{1}, r_{2}, etc.

I like to write the modulus of our ring as n and the element we're testing as k, and then the remainders as r_{1}, r_{2}, etc. The reason for this is to avoid multiplying the numbers together. That is, we do not want to write $371=340+31$ and lose sight of the element 34 .

I like to write the modulus of our ring as n and the element we're testing as k, and then the remainders as r_{1}, r_{2}, etc. The reason for this is to avoid multiplying the numbers together. That is, we do not want to write $371=340+31$ and lose sight of the element 34 . If we write this as $n=10 k+r_{1}$, we're not likely to lose the k. Doing that gives us

$$
\begin{aligned}
n & =10 k+r_{1} \\
k & =r_{1}+r_{2} \\
r_{1} & =10 r_{2}+r_{3}
\end{aligned}
$$

I like to write the modulus of our ring as n and the element we're testing as k, and then the remainders as r_{1}, r_{2}, etc. The reason for this is to avoid multiplying the numbers together. That is, we do not want to write $371=340+31$ and lose sight of the element 34 . If we write this as $n=10 k+r_{1}$, we're not likely to lose the k. Doing that gives us

$$
\begin{aligned}
n & =10 k+r_{1} \\
k & =r_{1}+r_{2} \\
r_{1} & =10 r_{2}+r_{3}
\end{aligned}
$$

This time we need to eliminate r_{1} and r_{2} and leave r_{3} as a combination of n and k.

I like to write the modulus of our ring as n and the element we're testing as k, and then the remainders as r_{1}, r_{2}, etc. The reason for this is to avoid multiplying the numbers together. That is, we do not want to write $371=340+31$ and lose sight of the element 34 . If we write this as $n=10 k+r_{1}$, we're not likely to lose the k. Doing that gives us

$$
\begin{aligned}
n & =10 k+r_{1} \\
k & =r_{1}+r_{2} \\
r_{1} & =10 r_{2}+r_{3}
\end{aligned}
$$

This time we need to eliminate r_{1} and r_{2} and leave r_{3} as a combination of n and k. We can do this like before: put $r_{1}=n-10 k$ into the second and third equations. Then use the second equation to get a formula for r_{2} and put that in the third equation.

If you've had Linear Algebra you can rewrite this as

$$
\begin{aligned}
r_{1} & =n-10 k \\
r_{1}+r_{2} & =k \\
-r_{1}+10 r_{2}+r_{3} & =0
\end{aligned}
$$

If you've had Linear Algebra you can rewrite this as

$$
\begin{aligned}
r_{1} & =n-10 k \\
r_{1}+r_{2} & =k \\
-r_{1}+10 r_{2}+r_{3} & =0
\end{aligned}
$$

And then use Gaussian or Gauss-Jordan elimination.

If you've had Linear Algebra you can rewrite this as

$$
\begin{aligned}
r_{1} & =n-10 k \\
r_{1}+r_{2} & =k \\
-r_{1}+10 r_{2}+r_{3} & =0
\end{aligned}
$$

And then use Gaussian or Gauss-Jordan elimination. For example: subtract the first equation from the second and add it to the third:

$$
\begin{aligned}
r_{1} & =n-10 k \\
+\quad r_{2} & =-n+11 k \\
+10 r_{2}+r_{3} & =n-10 k
\end{aligned}
$$

If you've had Linear Algebra you can rewrite this as

$$
\begin{aligned}
r_{1} & =n-10 k \\
r_{1}+r_{2} & =k \\
-r_{1}+10 r_{2}+r_{3} & =0
\end{aligned}
$$

And then use Gaussian or Gauss-Jordan elimination. For example: subtract the first equation from the second and add it to the third:

$$
\begin{aligned}
r_{1} & =n-10 k \\
+\quad r_{2} & =-n+11 k \\
+10 r_{2}+r_{3} & =n-10 k
\end{aligned}
$$

Now subtract 10 times equation 2 from equation 3 to get

$$
\begin{aligned}
& r_{1}=n-10 k \\
& r_{2}=-n+11 k \\
& r_{3}=11 n-120 k
\end{aligned}
$$

The last equation says that $1=(-120)(34)+11(371)$. This tells us that $(-120) \cdot 34=1$ in \mathbb{Z}_{371}. Thus $34^{-1}=-120=251$

The last equation says that $1=(-120)(34)+11(371)$. This tells us that $(-120) \cdot 34=1$ in \mathbb{Z}_{371}. Thus $34^{-1}=-120=251$
For Linear Algebra aficionados only: Use the augmented matrix

$$
\left(\begin{array}{ccc|cc}
r_{1} & r_{2} & r_{3} & n & k \\
\hline 1 & 0 & 0 & 1 & -10 \\
1 & 1 & 0 & 0 & 1 \\
-1 & 10 & 1 & 0 & 0
\end{array}\right)
$$

The last equation says that $1=(-120)(34)+11(371)$. This tells us that $(-120) \cdot 34=1$ in \mathbb{Z}_{371}. Thus $34^{-1}=-120=251$
For Linear Algebra aficionados only: Use the augmented matrix

$$
\left(\begin{array}{ccc|cc}
r_{1} & r_{2} & r_{3} & n & k \\
\hline 1 & 0 & 0 & 1 & -10 \\
1 & 1 & 0 & 0 & 1 \\
-1 & 10 & 1 & 0 & 0
\end{array}\right)
$$

and reduce it to echelon form

$$
\left(\begin{array}{ccc|cc}
1 & 0 & 0 & 1 & -10 \\
0 & 1 & 0 & -1 & 11 \\
0 & 0 & 1 & 11 & -120
\end{array}\right)
$$

The last equation says that $1=(-120)(34)+11(371)$. This tells us that $(-120) \cdot 34=1$ in \mathbb{Z}_{371}. Thus $34^{-1}=-120=251$
For Linear Algebra aficionados only: Use the augmented matrix

$$
\left(\begin{array}{ccc|cc}
r_{1} & r_{2} & r_{3} & n & k \\
\hline 1 & 0 & 0 & 1 & -10 \\
1 & 1 & 0 & 0 & 1 \\
-1 & 10 & 1 & 0 & 0
\end{array}\right)
$$

and reduce it to echelon form

$$
\left(\begin{array}{ccc|cc}
1 & 0 & 0 & 1 & -10 \\
0 & 1 & 0 & -1 & 11 \\
0 & 0 & 1 & 11 & -120
\end{array}\right)
$$

Then read off $1=11 n+(-120) k$.

