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In the twenty-four hour system of telling time the hours go from 0 at
midnight to 23 at one hour before midnight. Suppose the current time is
20 and my shift ends in 8 hours, then at the end of my shift the time
won't be 28 but rather 4. This gives us a system where 20 ‘+' 8 = 4.
Similarly, 17 ‘+' 7 = 0.

In higher mathematics we study systems that consist of a set on which one
or more binary operations are defined. The above description gives us a
set, namely {0,1,2,3,...,23} and an operation ‘+'. The operation is
analogous to addition, but is not the usual operation of addition of
integers. Let us call it + (temporarily). Its formal definition is

For any x and y in {0,1,2,...,23}, let z + y = (z + y) mod 24.

To make sense of this we need to know what mod means.
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If £ and n is are positive integers then there exist unique positive integers
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If £ and n is are positive integers then there exist unique positive integers
q and 7 where 0 < r < n and

k=gqn+r

The number g is called the integer quotient of dividing k by n and r is the
remainder. Then, by definition £ mod n is the remainder . Some authors
and most computer languages use ‘%’ instead of ‘mod’: k % n = r.

For example, Since 28 = 124 + 4, then for k = 28 and n = 24 we have
28 mod 24 = 4. Similarly. 71 =224 4 23 so 71 mod 24 = 23 and
72 mod 24 = 0.

By definition, we always have 0 < £k mod n < n — 1. We can obtain

k mod m by second grade divison: To find, for example 68 mod 9 = 5 we
say "9 goes into 68 seven times (for 63) with a remainder of 5." Here's an
example computing 721 mod 101 = 14:

7R 14

101} 721

707
14
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We can do modular arithmetic in any ‘base’: Define

Zn =10,1,2,--- ,n — 1} and define ‘addition’ on Z,, by

x4y = (r+y) mod n. We can also define multiplication this way:

x*y = (zy) mod n. The xy is ordinary multiplication.

Soin Zg = {0,1,2,3,4,5} we have 5 + 4 = 3 (because 9 mod 6 = 3) and
475 = 2 (because 20 mod 6 = 2). For small values of n one can find

k mod n by subtracting n from k (repeatedly, if necessary) until a
nonnegative number less than n is obtained. For example, to get

20 mod 6: 20 — 6 = 14 (too big), 14 — 6 = 8 (too big), 8 — 6 = 2 (okay).
These operations (4 and *) on Z, share a lot of the algebraic properties of
addition and multiplication of integers. It is usual to write Z for the set of
all integers (positive negative and 0).

There is a concept called congruence. It uses the notation
a=b (mod n)

This means that a — b is evenly divisible by n. The notation we will are
using: a = (b mod n) or a = (b % n) means two things

a=b(modn) and 0 <a<n.
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A ring is a set R along with two binary operations (traditionally the
symbols + and - are used) that satisfy the following properties.
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If x and y are in R then x 4+ y is in R.
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If z and y are in R then z +y =y + x.
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There exists a special element 0 in R satisfying x + 0 = x for every x
in R. This element is called the ‘zero’ of R.

If z is in R there is an associated element in R called the negative of
x and written —z that satisfies z + —z = 0.
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A ring is a set R along with two binary operations (traditionally the
symbols + and - are used) that satisfy the following properties.

C1
C2

Al
A2
A3

A4

A5
A6

If x and y are in R then x 4+ y is in R.
If z and y are in R then z -y isin R.

If z and y are in R then z +y =y + x.
If x, y and z are in Rthen (z+y)+z=2+ (y+ 2).

There exists a special element 0 in R satisfying x + 0 = x for every x
in R. This element is called the ‘zero’ of R.

If z is in R there is an associated element in R called the negative of
x and written —z that satisfies z + —z = 0.

If z, y and z arein R then (z-y)-z=z-(y- 2).
If x, y and z arein Rthenz-(y+z2)=2-y+x-z and
(y+z) x=y-z+z 2

The sets Z,, with the operations of ‘addition modulo n’ and ‘multiplication
modulo n' are all examples of rings. Notice that in Zo4 we saw that
174+ 7=0. By part A4, that means that —17 =7 and —7 = 17.
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There are a number of other properties that can be proved from A1-A6.
For example.

There is only one element that satisfies A3. In fact if any elements of
R satisfy x 4+ y = x then y must be zero.

Foranyzin R,0-z=0=2x-0.

There is only one negative for any element x in R. That is, if

z+y =0, then y = —=x.

Laws of signs: —0=0, —(—z) =z, z-(—y) = —(z-y) = (—x) -y
and (—2) - (—y) =z -y,

We can extend Al and A2 to any number of elements. That is

r1 4+ x2 + - - - + x, gives the same result however they are grouped or
reordered.

A5 can be extended to any number of elements: how they are
grouped does not change the result of the multiplication.

A6 applies to any length of the sum:

oty tyn) =TTyt ey,

and the same for multiplying on the right.
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Some rings have additional properties

In the definition of a ring we required x + y = y + x but did not require
x -y =1y -x. The reason for this is that matrices are very important in
mathematics and matrix multiplication doesn't satisfy this.

We also note that for the ring of all integers (Z, +, -) the only way one
gets x -y = 0 is if either x = 0 or y = 0. However, this is not true for all
rings. For example, in Zg we have 2-3 =0 as well as 4-3 = 0. (From now
on | will use normal + and - for the operations in any Z,.)

The ring of integers has a special element, the number 1, that satisfies
1-x = z for every element x. This not always true: the set of even
integers with the usual operations of addition and multiplication is a ring,
but has no such element.
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Definition
Let (R,+,-) be a ring

® if every pair of elements in R satisfies z -y =y -z we call R a
commutative ring

® |f there exists an element u # 0 of R that satisfiesu-x =z =z -u
for every z in R, then u is called a unity or a multiplicative identity
(or just ‘the identity’) and we say R is a ring with unity.

Definition
An element z # 0 of a ring R is called a proper zero divisor if there is
another element y # 0 such that z -y = 0.

Definition
Let (R,+, ) be a ring with unity u. If z is in R and there is an element y
in R such that z -y = u =y - x we call y the multiplicative inverse of x.
In that case we say that x is a unit (or is invertible) and we call its
multiplicative inverse 1.
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Examples

The rings Z,, are all commutative rings and rings with unity. The unity is
the element 1. If n is prime (cannot be factored into a product of smaller
numbers) then Z,, has no proper zero divisors.

It can be shown that a ring has at most one unity.

In Zg we have 1 for the unity. The elements 1 and 5 are units: since
1-1=1and 5-5=1 it follows that each is its own multiplicative inverse.

In Z15 we have units 2 and 8 (inverses of each other), 7 and 13 (inverses
of each other) and also 1, 4, 11 and 14 (each is its own inverse).
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The simplest ring is {0}, with the operations defined 0+ 0 = 0 and
0-0=0. Itit trivially commutative, has no proper zero divisors, and has
no unity.
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The simplest ring is {0}, with the operations defined 0+ 0 = 0 and

0-0=0. Itit trivially commutative, has no proper zero divisors, and has
no unity.

The next simplest might be Zs. In applications, 0 often represents ‘false’
and 1 represents ‘true’. Then multiplication represents the AND operation
and addition represents XOR (the ‘exclusive or' operation). This is a
commutative ring with unity with no proper zero divisors.

+]0 1 |0 1
0/0 1 0fo
110 1/0 1

Addition and multiplication tables for Zo
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The set of units in a ring is a useful system of its own that has the
following properties

If R is a ring with unity u then

1. the unity u is always a unit and is its own inverse;

2. ifx is a unit so are —x and xz~': the inverse of —x is —x~—! and the

inverse of x~ ' is x.
3. ifx and y are units then so is x - y: the inverse of x -y isy ' -z~ 1.

Proof: If w is the unity then u - u = w.

1

If we multiply (—z) - (—2~1) we get #- 271 = u (law of signs). The other

order is similar.
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If 2 and y are units consider (z-y) - (y~'-z71).
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I
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If 2 and y are units consider (z-y) - (y~'-2~!). Regroup this as

(@ (y-y™) el =(eu)a

=TT = u.

-1

Similar steps show that (y~!-271) - (z-y) = u. QED

Some examples: we saw that in Z5, 7 is invertible and 77! = 13.
Therefore 13 is invertible with 1371 = 7. Also, —7 is invertible and
(-7)"'=8"1=2=-13=—7"1 Finally, as an example of inverses of
products 7 -4 = 13 is invertibleand 47! . 771 =4.13 =7 =131

We can do repeated multiplications as well: the inverse of 8 -13-13 =2 is
7-7-2=8.
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