Rings and Things

Daniel H. Luecking

October 11, 2023

Modular arithmetic (aka "clock" arithmetic).

In the twenty-four hour system of telling time the hours go from 0 at midnight to 23 at one hour before midnight.

Modular arithmetic (aka "clock" arithmetic).

In the twenty-four hour system of telling time the hours go from 0 at midnight to 23 at one hour before midnight. Suppose the current time is 20 and my shift ends in 8 hours, then at the end of my shift the time won't be 28 but rather 4 .

Modular arithmetic (aka "clock" arithmetic).

In the twenty-four hour system of telling time the hours go from 0 at midnight to 23 at one hour before midnight. Suppose the current time is 20 and my shift ends in 8 hours, then at the end of my shift the time won't be 28 but rather 4 . This gives us a system where 20 ' + ' $8=4$. Similarly, 17 ' + ' $7=0$.
In higher mathematics we study systems that consist of a set on which one or more binary operations are defined. The above description gives us a set, namely $\{0,1,2,3, \ldots, 23\}$ and an operation ' + '.

Modular arithmetic (aka "clock" arithmetic).

In the twenty-four hour system of telling time the hours go from 0 at midnight to 23 at one hour before midnight. Suppose the current time is 20 and my shift ends in 8 hours, then at the end of my shift the time won't be 28 but rather 4 . This gives us a system where 20 ' + ' $8=4$. Similarly, 17 ' + ' $7=0$.
In higher mathematics we study systems that consist of a set on which one or more binary operations are defined. The above description gives us a set, namely $\{0,1,2,3, \ldots, 23\}$ and an operation ' + '. The operation is analogous to addition, but is not the usual operation of addition of integers. Let us call it $\hat{+}$ (temporarily). Its formal definition is

$$
\text { For any } x \text { and } y \text { in }\{0,1,2, \ldots, 23\} \text {, let } x \hat{+} y=(x+y) \bmod 24 \text {. }
$$

To make sense of this we need to know what mod means.

If k and n is are positive integers then there exist unique positive integers q and r where $0 \leq r<n$ and

$$
k=q n+r
$$

If k and n is are positive integers then there exist unique positive integers q and r where $0 \leq r<n$ and

$$
k=q n+r
$$

The number q is called the integer quotient of dividing k by n and r is the remainder. Then, by definition $k \bmod n$ is the remainder r. Some authors and most computer languages use ' $\%$ ' instead of 'mod': $k \% n=r$.

If k and n is are positive integers then there exist unique positive integers q and r where $0 \leq r<n$ and

$$
k=q n+r
$$

The number q is called the integer quotient of dividing k by n and r is the remainder. Then, by definition $k \bmod n$ is the remainder r. Some authors and most computer languages use ' $\%$ ' instead of 'mod': $k \% n=r$.
For example, Since $28=1 \cdot 24+4$, then for $k=28$ and $n=24$ we have $28 \bmod 24=4$. Similarly. $71=2 \cdot 24+23$ so $71 \bmod 24=23$ and $72 \bmod 24=0$.

If k and n is are positive integers then there exist unique positive integers q and r where $0 \leq r<n$ and

$$
k=q n+r
$$

The number q is called the integer quotient of dividing k by n and r is the remainder. Then, by definition $k \bmod n$ is the remainder r. Some authors and most computer languages use ' $\%$ ' instead of 'mod': $k \% n=r$.
For example, Since $28=1 \cdot 24+4$, then for $k=28$ and $n=24$ we have $28 \bmod 24=4$. Similarly. $71=2 \cdot 24+23$ so $71 \bmod 24=23$ and $72 \bmod 24=0$.
By definition, we always have $0 \leq k \bmod n \leq n-1$. We can obtain $k \bmod m$ by second grade divison: To find, for example $68 \bmod 9=5$ we say " 9 goes into 68 seven times (for 63) with a remainder of 5 ." Here's an example computing $721 \bmod 101=14$:

We can do modular arithmetic in any 'base': Define $\mathbb{Z}_{n}=\{0,1,2, \cdots, n-1\}$ and define 'addition' on \mathbb{Z}_{n} by $x \hat{+} y=(x+y) \bmod n$.

We can do modular arithmetic in any 'base': Define $\mathbb{Z}_{n}=\{0,1,2, \cdots, n-1\}$ and define 'addition' on \mathbb{Z}_{n} by $x \hat{+} y=(x+y) \bmod n$. We can also define multiplication this way: $x \wedge y=(x y) \bmod n$. The $x y$ is ordinary multiplication.

We can do modular arithmetic in any 'base': Define $\mathbb{Z}_{n}=\{0,1,2, \cdots, n-1\}$ and define 'addition' on \mathbb{Z}_{n} by $x \hat{+} y=(x+y) \bmod n$. We can also define multiplication this way: $x \wedge y=(x y) \bmod n$. The $x y$ is ordinary multiplication.
So in $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ we have $5 \hat{+} 4=3($ because $9 \bmod 6=3)$ and $4 \cdot 5=2($ because $20 \bmod 6=2)$.

We can do modular arithmetic in any 'base': Define $\mathbb{Z}_{n}=\{0,1,2, \cdots, n-1\}$ and define 'addition' on \mathbb{Z}_{n} by $x \hat{+} y=(x+y) \bmod n$. We can also define multiplication this way: $x \wedge y=(x y) \bmod n$. The $x y$ is ordinary multiplication.
So in $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ we have $5 \hat{+} 4=3($ because $9 \bmod 6=3)$ and $4 \wedge 5=2($ because $20 \bmod 6=2)$. For small values of n one can find $k \bmod n$ by subtracting n from k (repeatedly, if necessary) until a nonnegative number less than n is obtained.

We can do modular arithmetic in any 'base': Define $\mathbb{Z}_{n}=\{0,1,2, \cdots, n-1\}$ and define 'addition' on \mathbb{Z}_{n} by $x \hat{+} y=(x+y) \bmod n$. We can also define multiplication this way: $x \wedge y=(x y) \bmod n$. The $x y$ is ordinary multiplication.
So in $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ we have $5 \hat{+} 4=3($ because $9 \bmod 6=3)$ and $4 \cdot 5=2$ (because $20 \bmod 6=2$). For small values of n one can find $k \bmod n$ by subtracting n from k (repeatedly, if necessary) until a nonnegative number less than n is obtained. For example, to get $20 \bmod 6: 20-6=14$ (too big), $14-6=8$ (too big), $8-6=2$ (okay). These operations ($\hat{+}$ and $\hat{*}$) on \mathbb{Z}_{n} share a lot of the algebraic properties of addition and multiplication of integers.

We can do modular arithmetic in any 'base': Define $\mathbb{Z}_{n}=\{0,1,2, \cdots, n-1\}$ and define 'addition' on \mathbb{Z}_{n} by $x \hat{+} y=(x+y) \bmod n$. We can also define multiplication this way: $x \wedge y=(x y) \bmod n$. The $x y$ is ordinary multiplication.
So in $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ we have $5 \hat{+} 4=3($ because $9 \bmod 6=3)$ and $4 \cdot 5=2$ (because $20 \bmod 6=2$). For small values of n one can find $k \bmod n$ by subtracting n from k (repeatedly, if necessary) until a nonnegative number less than n is obtained. For example, to get $20 \bmod 6: 20-6=14$ (too big), $14-6=8$ (too big), $8-6=2$ (okay).
These operations ($\hat{+}$ and $\hat{*}$) on \mathbb{Z}_{n} share a lot of the algebraic properties of addition and multiplication of integers. It is usual to write \mathbb{Z} for the set of all integers (positive negative and 0).
There is a concept called congruence. It uses the notation

$$
a \equiv b(\bmod n)
$$

We can do modular arithmetic in any 'base': Define $\mathbb{Z}_{n}=\{0,1,2, \cdots, n-1\}$ and define 'addition' on \mathbb{Z}_{n} by $x \hat{+} y=(x+y) \bmod n$. We can also define multiplication this way: $x^{\wedge} y=(x y) \bmod n$. The $x y$ is ordinary multiplication.
So in $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ we have $5 \hat{+} 4=3($ because $9 \bmod 6=3)$ and $4 \hat{5} 5=2$ (because $20 \bmod 6=2$). For small values of n one can find $k \bmod n$ by subtracting n from k (repeatedly, if necessary) until a nonnegative number less than n is obtained. For example, to get $20 \bmod 6: 20-6=14$ (too big), $14-6=8$ (too big), $8-6=2$ (okay). These operations ($\hat{+}$ and $\hat{*}$) on \mathbb{Z}_{n} share a lot of the algebraic properties of addition and multiplication of integers. It is usual to write \mathbb{Z} for the set of all integers (positive negative and 0).
There is a concept called congruence. It uses the notation

$$
a \equiv b(\bmod n)
$$

This means that $a-b$ is evenly divisible by n. The notation we will are using: $a=(b \bmod n)$ or $a=(b \% n)$ means two things

$$
a \equiv b(\bmod n) \text { and } 0 \leq a<n .
$$

A ring is a set R along with two binary operations (traditionally the symbols + and \cdot are used) that satisfy the following properties.

A ring is a set R along with two binary operations (traditionally the symbols + and • are used) that satisfy the following properties.

C1 If x and y are in R then $x+y$ is in R.
C2 If x and y are in R then $x \cdot y$ is in R.

A ring is a set R along with two binary operations (traditionally the symbols + and \cdot are used) that satisfy the following properties.

C1 If x and y are in R then $x+y$ is in R.
C2 If x and y are in R then $x \cdot y$ is in R.
A1 If x and y are in R then $x+y=y+x$.
A2 If x, y and z are in R then $(x+y)+z=x+(y+z)$.

A ring is a set R along with two binary operations (traditionally the symbols + and \cdot are used) that satisfy the following properties.

C1 If x and y are in R then $x+y$ is in R.
C2 If x and y are in R then $x \cdot y$ is in R.
A1 If x and y are in R then $x+y=y+x$.
A2 If x, y and z are in R then $(x+y)+z=x+(y+z)$.
A3 There exists a special element 0 in R satisfying $x+0=x$ for every x in R. This element is called the 'zero' of R.
A4 If x is in R there is an associated element in R called the negative of x and written $-x$ that satisfies $x+-x=0$.

A ring is a set R along with two binary operations (traditionally the symbols + and \cdot are used) that satisfy the following properties.

C1 If x and y are in R then $x+y$ is in R.
C2 If x and y are in R then $x \cdot y$ is in R.
A1 If x and y are in R then $x+y=y+x$.
A2 If x, y and z are in R then $(x+y)+z=x+(y+z)$.
A3 There exists a special element 0 in R satisfying $x+0=x$ for every x in R. This element is called the 'zero' of R.
A4 If x is in R there is an associated element in R called the negative of x and written $-x$ that satisfies $x+-x=0$.
A5 If x, y and z are in R then $(x \cdot y) \cdot z=x \cdot(y \cdot z)$.

A ring is a set R along with two binary operations (traditionally the symbols + and \cdot are used) that satisfy the following properties.

C1 If x and y are in R then $x+y$ is in R.
C2 If x and y are in R then $x \cdot y$ is in R.
A1 If x and y are in R then $x+y=y+x$.
A2 If x, y and z are in R then $(x+y)+z=x+(y+z)$.
A3 There exists a special element 0 in R satisfying $x+0=x$ for every x in R. This element is called the 'zero' of R.
A4 If x is in R there is an associated element in R called the negative of x and written $-x$ that satisfies $x+-x=0$.
A5 If x, y and z are in R then $(x \cdot y) \cdot z=x \cdot(y \cdot z)$.
A6 If x, y and z are in R then $x \cdot(y+z)=x \cdot y+x \cdot z$ and $(y+z) \cdot x=y \cdot x+z \cdot x$.

A ring is a set R along with two binary operations (traditionally the symbols + and \cdot are used) that satisfy the following properties.

C1 If x and y are in R then $x+y$ is in R.
C2 If x and y are in R then $x \cdot y$ is in R.
A1 If x and y are in R then $x+y=y+x$.
A2 If x, y and z are in R then $(x+y)+z=x+(y+z)$.
A3 There exists a special element 0 in R satisfying $x+0=x$ for every x in R. This element is called the 'zero' of R.
A4 If x is in R there is an associated element in R called the negative of x and written $-x$ that satisfies $x+-x=0$.
A5 If x, y and z are in R then $(x \cdot y) \cdot z=x \cdot(y \cdot z)$.
A6 If x, y and z are in R then $x \cdot(y+z)=x \cdot y+x \cdot z$ and $(y+z) \cdot x=y \cdot x+z \cdot x$.
The sets \mathbb{Z}_{n} with the operations of 'addition modulo n ' and 'multiplication modulo n ' are all examples of rings. Notice that in \mathbb{Z}_{24} we saw that $17 \hat{+} 7=0$. By part A4, that means that $-17=7$ and $-7=17$.

There are a number of other properties that can be proved from A1-A6.

There are a number of other properties that can be proved from A1-A6. For example.

- There is only one element that satisfies A3. In fact if any elements of R satisfy $x+y=x$ then y must be zero.

There are a number of other properties that can be proved from A1-A6. For example.

- There is only one element that satisfies A3. In fact if any elements of R satisfy $x+y=x$ then y must be zero.
- For any x in $R, 0 \cdot x=0=x \cdot 0$.

There are a number of other properties that can be proved from A1-A6. For example.

- There is only one element that satisfies A3. In fact if any elements of R satisfy $x+y=x$ then y must be zero.
- For any x in $R, 0 \cdot x=0=x \cdot 0$.
- There is only one negative for any element x in R. That is, if $x+y=0$, then $y=-x$.

There are a number of other properties that can be proved from A1-A6. For example.

- There is only one element that satisfies A3. In fact if any elements of R satisfy $x+y=x$ then y must be zero.
- For any x in $R, 0 \cdot x=0=x \cdot 0$.
- There is only one negative for any element x in R. That is, if $x+y=0$, then $y=-x$.
- Laws of signs: $-0=0,-(-x)=x, x \cdot(-y)=-(x \cdot y)=(-x) \cdot y$ and $(-x) \cdot(-y)=x \cdot y$.

There are a number of other properties that can be proved from A1-A6. For example.

- There is only one element that satisfies A3. In fact if any elements of R satisfy $x+y=x$ then y must be zero.
- For any x in $R, 0 \cdot x=0=x \cdot 0$.
- There is only one negative for any element x in R. That is, if $x+y=0$, then $y=-x$.
- Laws of signs: $-0=0,-(-x)=x, x \cdot(-y)=-(x \cdot y)=(-x) \cdot y$ and $(-x) \cdot(-y)=x \cdot y$.
- We can extend A1 and A2 to any number of elements. That is $x_{1}+x_{2}+\cdots+x_{n}$ gives the same result however they are grouped or reordered.

There are a number of other properties that can be proved from A1-A6. For example.

- There is only one element that satisfies A3. In fact if any elements of R satisfy $x+y=x$ then y must be zero.
- For any x in $R, 0 \cdot x=0=x \cdot 0$.
- There is only one negative for any element x in R. That is, if $x+y=0$, then $y=-x$.
- Laws of signs: $-0=0,-(-x)=x, x \cdot(-y)=-(x \cdot y)=(-x) \cdot y$ and $(-x) \cdot(-y)=x \cdot y$.
- We can extend A1 and A2 to any number of elements. That is $x_{1}+x_{2}+\cdots+x_{n}$ gives the same result however they are grouped or reordered.
- A5 can be extended to any number of elements: how they are grouped does not change the result of the multiplication.

There are a number of other properties that can be proved from A1-A6. For example.

- There is only one element that satisfies A3. In fact if any elements of R satisfy $x+y=x$ then y must be zero.
- For any x in $R, 0 \cdot x=0=x \cdot 0$.
- There is only one negative for any element x in R. That is, if $x+y=0$, then $y=-x$.
- Laws of signs: $-0=0,-(-x)=x, x \cdot(-y)=-(x \cdot y)=(-x) \cdot y$ and $(-x) \cdot(-y)=x \cdot y$.
- We can extend A1 and A2 to any number of elements. That is $x_{1}+x_{2}+\cdots+x_{n}$ gives the same result however they are grouped or reordered.
- A5 can be extended to any number of elements: how they are grouped does not change the result of the multiplication.
- A6 applies to any length of the sum:

$$
x \cdot\left(y_{1}+y_{2}+\cdots+y_{n}\right)=x \cdot y_{1}+x \cdot y_{2}+\cdots+x \cdot y_{n}
$$

and the same for multiplying on the right.

Some rings have additional properties
In the definition of a ring we required $x+y=y+x$ but did not require $x \cdot y=y \cdot x$.

Some rings have additional properties
In the definition of a ring we required $x+y=y+x$ but did not require $x \cdot y=y \cdot x$. The reason for this is that matrices are very important in mathematics and matrix multiplication doesn't satisfy this.

Some rings have additional properties

In the definition of a ring we required $x+y=y+x$ but did not require $x \cdot y=y \cdot x$. The reason for this is that matrices are very important in mathematics and matrix multiplication doesn't satisfy this.

We also note that for the ring of all integers $(\mathbb{Z},+, \cdot)$ the only way one gets $x \cdot y=0$ is if either $x=0$ or $y=0$.

Some rings have additional properties

In the definition of a ring we required $x+y=y+x$ but did not require $x \cdot y=y \cdot x$. The reason for this is that matrices are very important in mathematics and matrix multiplication doesn't satisfy this.
We also note that for the ring of all integers $(\mathbb{Z},+, \cdot)$ the only way one gets $x \cdot y=0$ is if either $x=0$ or $y=0$. However, this is not true for all rings. For example, in \mathbb{Z}_{6} we have $2 \cdot 3=0$ as well as $4 \cdot 3=0$. (From now on I will use normal + and \cdot for the operations in any \mathbb{Z}_{n}.)

Some rings have additional properties

In the definition of a ring we required $x+y=y+x$ but did not require $x \cdot y=y \cdot x$. The reason for this is that matrices are very important in mathematics and matrix multiplication doesn't satisfy this.
We also note that for the ring of all integers $(\mathbb{Z},+, \cdot)$ the only way one gets $x \cdot y=0$ is if either $x=0$ or $y=0$. However, this is not true for all rings. For example, in \mathbb{Z}_{6} we have $2 \cdot 3=0$ as well as $4 \cdot 3=0$. (From now on I will use normal + and \cdot for the operations in any \mathbb{Z}_{n}.)
The ring of integers has a special element, the number 1, that satisfies $1 \cdot x=x$ for every element x.

Some rings have additional properties

In the definition of a ring we required $x+y=y+x$ but did not require $x \cdot y=y \cdot x$. The reason for this is that matrices are very important in mathematics and matrix multiplication doesn't satisfy this.
We also note that for the ring of all integers $(\mathbb{Z},+, \cdot)$ the only way one gets $x \cdot y=0$ is if either $x=0$ or $y=0$. However, this is not true for all rings. For example, in \mathbb{Z}_{6} we have $2 \cdot 3=0$ as well as $4 \cdot 3=0$. (From now on I will use normal + and \cdot for the operations in any \mathbb{Z}_{n}.)
The ring of integers has a special element, the number 1, that satisfies $1 \cdot x=x$ for every element x. This not always true: the set of even integers with the usual operations of addition and multiplication is a ring, but has no such element.

Definition

Let $(R,+, \cdot)$ be a ring

- if every pair of elements in R satisfies $x \cdot y=y \cdot x$ we call R a commutative ring

Definition

Let $(R,+, \cdot)$ be a ring

- if every pair of elements in R satisfies $x \cdot y=y \cdot x$ we call R a commutative ring
- If there exists an element $u \neq 0$ of R that satisfies $u \cdot x=x=x \cdot u$ for every x in R, then u is called a unity or a multiplicative identity (or just 'the identity') and we say R is a ring with unity.

Definition

An element $x \neq 0$ of a ring R is called a proper zero divisor if there is another element $y \neq 0$ such that $x \cdot y=0$.

Definition

Let $(R,+, \cdot)$ be a ring

- if every pair of elements in R satisfies $x \cdot y=y \cdot x$ we call R a commutative ring
- If there exists an element $u \neq 0$ of R that satisfies $u \cdot x=x=x \cdot u$ for every x in R, then u is called a unity or a multiplicative identity (or just 'the identity') and we say R is a ring with unity.

Definition

An element $x \neq 0$ of a ring R is called a proper zero divisor if there is another element $y \neq 0$ such that $x \cdot y=0$.

Definition

Let $(R,+, \cdot)$ be a ring with unity u. If x is in R and there is an element y in R such that $x \cdot y=u=y \cdot x$ we call y the multiplicative inverse of x. In that case we say that x is a unit (or is invertible) and we call its multiplicative inverse x^{-1}.

Examples

The rings \mathbb{Z}_{n} are all commutative rings and rings with unity. The unity is the element 1 .

Examples

The rings \mathbb{Z}_{n} are all commutative rings and rings with unity. The unity is the element 1 . If n is prime (cannot be factored into a product of smaller numbers) then \mathbb{Z}_{n} has no proper zero divisors.

Examples

The rings \mathbb{Z}_{n} are all commutative rings and rings with unity. The unity is the element 1 . If n is prime (cannot be factored into a product of smaller numbers) then \mathbb{Z}_{n} has no proper zero divisors.

It can be shown that a ring has at most one unity.

Examples

The rings \mathbb{Z}_{n} are all commutative rings and rings with unity. The unity is the element 1 . If n is prime (cannot be factored into a product of smaller numbers) then \mathbb{Z}_{n} has no proper zero divisors.
It can be shown that a ring has at most one unity.
In \mathbb{Z}_{6} we have 1 for the unity. The elements 1 and 5 are units: since $1 \cdot 1=1$ and $5 \cdot 5=1$ it follows that each is its own multiplicative inverse. In \mathbb{Z}_{15} we have units 2 and 8 (inverses of each other), 7 and 13 (inverses of each other) and also $1,4,11$ and 14 (each is its own inverse).

The simplest ring is $\{0\}$, with the operations defined $0+0=0$ and $0 \cdot 0=0$. It it trivially commutative, has no proper zero divisors, and has no unity.

The simplest ring is $\{0\}$, with the operations defined $0+0=0$ and $0 \cdot 0=0$. It it trivially commutative, has no proper zero divisors, and has no unity.
The next simplest might be \mathbb{Z}_{2}. In applications, 0 often represents 'false' and 1 represents 'true'. Then multiplication represents the AND operation and addition represents XOR (the 'exclusive or' operation).

The simplest ring is $\{0\}$, with the operations defined $0+0=0$ and $0 \cdot 0=0$. It it trivially commutative, has no proper zero divisors, and has no unity.
The next simplest might be \mathbb{Z}_{2}. In applications, 0 often represents 'false' and 1 represents 'true'. Then multiplication represents the AND operation and addition represents XOR (the 'exclusive or' operation). This is a commutative ring with unity with no proper zero divisors.

+	0	1
0	0	1
1	1	0

\cdot	0	1
0	0	0
1	0	1

Addition and multiplication tables for \mathbb{Z}_{2}

The set of units in a ring is a useful system of its own that has the following properties

The set of units in a ring is a useful system of its own that has the following properties

Theorem

If R is a ring with unity u then

1. the unity u is always a unit and is its own inverse;

The set of units in a ring is a useful system of its own that has the following properties

Theorem

If R is a ring with unity u then

1. the unity u is always a unit and is its own inverse;
2. if x is a unit so are $-x$ and x^{-1} : the inverse of $-x$ is $-x^{-1}$ and the inverse of x^{-1} is x.

The set of units in a ring is a useful system of its own that has the following properties

Theorem

If R is a ring with unity u then

1. the unity u is always a unit and is its own inverse;
2. if x is a unit so are $-x$ and x^{-1} : the inverse of $-x$ is $-x^{-1}$ and the inverse of x^{-1} is x.
3. if x and y are units then so is $x \cdot y$: the inverse of $x \cdot y$ is $y^{-1} \cdot x^{-1}$.

The set of units in a ring is a useful system of its own that has the following properties

Theorem

If R is a ring with unity u then

1. the unity u is always a unit and is its own inverse;
2. if x is a unit so are $-x$ and x^{-1} : the inverse of $-x$ is $-x^{-1}$ and the inverse of x^{-1} is x.
3. if x and y are units then so is $x \cdot y$: the inverse of $x \cdot y$ is $y^{-1} \cdot x^{-1}$.

Proof: If u is the unity then $u \cdot u=u$.

The set of units in a ring is a useful system of its own that has the following properties

Theorem

If R is a ring with unity u then

1. the unity u is always a unit and is its own inverse;
2. if x is a unit so are $-x$ and x^{-1} : the inverse of $-x$ is $-x^{-1}$ and the inverse of x^{-1} is x.
3. if x and y are units then so is $x \cdot y$: the inverse of $x \cdot y$ is $y^{-1} \cdot x^{-1}$.

Proof: If u is the unity then $u \cdot u=u$. If we multiply $(-x) \cdot\left(-x^{-1}\right)$ we get $x \cdot x^{-1}=u$ (law of signs). The other order is similar.

If x and y are units consider $(x \cdot y) \cdot\left(y^{-1} \cdot x^{-1}\right)$.

If x and y are units consider $(x \cdot y) \cdot\left(y^{-1} \cdot x^{-1}\right)$. Regroup this as

$$
\begin{aligned}
\left(x \cdot\left(y \cdot y^{-1}\right)\right) \cdot x^{-1} & =(x \cdot u) \cdot x^{-1} \\
& =x \cdot x^{-1}=u .
\end{aligned}
$$

If x and y are units consider $(x \cdot y) \cdot\left(y^{-1} \cdot x^{-1}\right)$. Regroup this as

$$
\begin{aligned}
\left(x \cdot\left(y \cdot y^{-1}\right)\right) \cdot x^{-1} & =(x \cdot u) \cdot x^{-1} \\
& =x \cdot x^{-1}=u .
\end{aligned}
$$

Similar steps show that $\left(y^{-1} \cdot x^{-1}\right) \cdot(x \cdot y)=u$. QED

If x and y are units consider $(x \cdot y) \cdot\left(y^{-1} \cdot x^{-1}\right)$. Regroup this as

$$
\begin{aligned}
\left(x \cdot\left(y \cdot y^{-1}\right)\right) \cdot x^{-1} & =(x \cdot u) \cdot x^{-1} \\
& =x \cdot x^{-1}=u .
\end{aligned}
$$

Similar steps show that $\left(y^{-1} \cdot x^{-1}\right) \cdot(x \cdot y)=u$. QED Some examples: we saw that in $\mathbb{Z}_{15}, 7$ is invertible and $7^{-1}=13$. Therefore 13 is invertible with $13^{-1}=7$.

If x and y are units consider $(x \cdot y) \cdot\left(y^{-1} \cdot x^{-1}\right)$. Regroup this as

$$
\begin{aligned}
\left(x \cdot\left(y \cdot y^{-1}\right)\right) \cdot x^{-1} & =(x \cdot u) \cdot x^{-1} \\
& =x \cdot x^{-1}=u .
\end{aligned}
$$

Similar steps show that $\left(y^{-1} \cdot x^{-1}\right) \cdot(x \cdot y)=u$. QED Some examples: we saw that in $\mathbb{Z}_{15}, 7$ is invertible and $7^{-1}=13$. Therefore 13 is invertible with $13^{-1}=7$. Also, -7 is invertible and $(-7)^{-1}=8^{-1}=2=-13=-7^{-1}$.

If x and y are units consider $(x \cdot y) \cdot\left(y^{-1} \cdot x^{-1}\right)$. Regroup this as

$$
\begin{aligned}
\left(x \cdot\left(y \cdot y^{-1}\right)\right) \cdot x^{-1} & =(x \cdot u) \cdot x^{-1} \\
& =x \cdot x^{-1}=u .
\end{aligned}
$$

Similar steps show that $\left(y^{-1} \cdot x^{-1}\right) \cdot(x \cdot y)=u$. QED
Some examples: we saw that in $\mathbb{Z}_{15}, 7$ is invertible and $7^{-1}=13$. Therefore 13 is invertible with $13^{-1}=7$. Also, -7 is invertible and $(-7)^{-1}=8^{-1}=2=-13=-7^{-1}$. Finally, as an example of inverses of products $7 \cdot 4=13$ is invertible and $4^{-1} \cdot 7^{-1}=4 \cdot 13=7=13^{-1}$.

If x and y are units consider $(x \cdot y) \cdot\left(y^{-1} \cdot x^{-1}\right)$. Regroup this as

$$
\begin{aligned}
\left(x \cdot\left(y \cdot y^{-1}\right)\right) \cdot x^{-1} & =(x \cdot u) \cdot x^{-1} \\
& =x \cdot x^{-1}=u .
\end{aligned}
$$

Similar steps show that $\left(y^{-1} \cdot x^{-1}\right) \cdot(x \cdot y)=u$. QED
Some examples: we saw that in $\mathbb{Z}_{15}, 7$ is invertible and $7^{-1}=13$. Therefore 13 is invertible with $13^{-1}=7$. Also, -7 is invertible and $(-7)^{-1}=8^{-1}=2=-13=-7^{-1}$. Finally, as an example of inverses of products $7 \cdot 4=13$ is invertible and $4^{-1} \cdot 7^{-1}=4 \cdot 13=7=13^{-1}$.
We can do repeated multiplications as well: the inverse of $8 \cdot 13 \cdot 13=2$ is $7 \cdot 7 \cdot 2=8$.

