Recurrence Relations

Daniel H. Luecking

October 6, 2023

$$a_n - a_{n-1} - 2a_{n-2} = 4n, \quad n \ge 2$$

 $a_0 = 1, \ a_1 = 2.$

$$a_n - a_{n-1} - 2a_{n-2} = 4n, \quad n \ge 2$$

 $a_0 = 1, \ a_1 = 2.$

Again, looking at 4n we reason that it is a constant times n and we might guess that there is a particular solution of the form $a_n = An$.

$$a_n - a_{n-1} - 2a_{n-2} = 4n, \quad n \ge 2$$

 $a_0 = 1, \ a_1 = 2.$

Again, looking at 4n we reason that it is a constant times n and we might guess that there is a particular solution of the form $a_n = An$.

This is close but doesn't quite work. Lets skip the explanation (for now) and just say that the right choice is $a_n = An + B$ for two constants A and B that need to be determined.

$$a_n - a_{n-1} - 2a_{n-2} = 4n, \quad n \ge 2$$

 $a_0 = 1, \ a_1 = 2.$

Again, looking at 4n we reason that it is a constant times n and we might guess that there is a particular solution of the form $a_n = An$.

This is close but doesn't quite work. Lets skip the explanation (for now) and just say that the right choice is $a_n = An + B$ for two constants A and B that need to be determined.

Putting $a_n = An + B$, $a_{n-1} = A(n-1) + B = An - A + B$ and $a_{n-2} = A(n-2) + B = An - 2A + B$ into the recurrence relation, we get

$$An + B - (An - A + B) - 2(An - 2A + B) = 4n$$
$$An + B - An + A - B - 2An + 4A - 2B = 4n$$
$$-2An - 2B + 5A = 4n$$

 $\ln -2An + 5A - 2B = 4n$, we need to choose A and B to make both sides identical.

In -2An + 5A - 2B = 4n, we need to choose A and B to make both sides identical. Since the right side has no constant term, we need 5A - 2B = 0 and then we need -2An = 4n.

In -2An + 5A - 2B = 4n, we need to choose A and B to make both sides identical. Since the right side has no constant term, we need 5A - 2B = 0 and then we need -2An = 4n. That is, we solve

$$-2A = 4$$
$$5A - 2B = 0$$

In -2An + 5A - 2B = 4n, we need to choose A and B to make both sides identical. Since the right side has no constant term, we need 5A - 2B = 0 and then we need -2An = 4n. That is, we solve

$$-2A = 4$$
$$5A - 2B = 0$$

We get A = -2 and B = -5. Here we can see why the B is needed: there is no choice for A for which -2An + 5A is equal to 4n for every n. In -2An + 5A - 2B = 4n, we need to choose A and B to make both sides identical. Since the right side has no constant term, we need 5A - 2B = 0 and then we need -2An = 4n. That is, we solve

$$-2A = 4$$
$$5A - 2B = 0$$

We get A = -2 and B = -5. Here we can see why the B is needed: there is no choice for A for which -2An + 5A is equal to 4n for every n. This gives us a particular solution $a_n^{(p)} = -2n - 5$. We add this to the homogeneous solution $a_n^{(h)} = C_1(-1)^n + C_22^n$ to get our general solution

$$a_n = C_1(-1)^n + C_2 2^n - 2n - 5.$$

With $a_n = C_1(-1)^n + C_2 2^n - 2n - 5$ as our general solution and initial conditions $a_0 = 1$, $a_1 = 2$, the system of equations for C_1 and C_2 is

$$C_1 + C_2 - 5 = 1$$
$$-C_1 + 2C_2 - 7 = 2$$

With $a_n = C_1(-1)^n + C_2 2^n - 2n - 5$ as our general solution and initial conditions $a_0 = 1$, $a_1 = 2$, the system of equations for C_1 and C_2 is

$$C_1 + C_2 - 5 = 1$$
$$-C_1 + 2C_2 - 7 = 2$$

which has solution $C_1 = 1$, $C_2 = 5$. The completed solution is $a_n = (-1)^n + (5)2^n - 2n - 5$.

With $a_n = C_1(-1)^n + C_2 2^n - 2n - 5$ as our general solution and initial conditions $a_0 = 1$, $a_1 = 2$, the system of equations for C_1 and C_2 is

$$C_1 + C_2 - 5 = 1$$
$$-C_1 + 2C_2 - 7 = 2$$

which has solution $C_1 = 1$, $C_2 = 5$. The completed solution is $a_n = (-1)^n + (5)2^n - 2n - 5$.

The general rule is that if the right side is a polynomial in the variable n, then $a_n^{(p)}$ will likely also be a polynomial of the same degree, but may have terms that the right side is missing.

For example:

Right side	form of particular solution
5	A
$(5)3^{n}$	$A3^n$
n-2	An + B
$2n^3 + 3n$	$An^3 + Bn^2 + Cn + D$
$3n2^n$	$(An+B)2^n$
$(n^3 + 2)5^n$	$(An^3 + Bn^2 + Cn + D)5^n$

For example:

Right side	form of particular solution
5	A
$(5)3^{n}$	$A3^n$
n-2	An + B
$2n^3 + 3n$	$An^3 + Bn^2 + Cn + D$
$3n2^n$	$(An+B)2^n$
$(n^3 + 2)5^n$	$(An^3 + Bn^2 + Cn + D)5^n$

An exceptional case: If the right side is similar to the homogeneous solution, then a simple application of this method will often fail.

Here is an example of that:

$$a_n - a_{n-1} - 2a_{n-2} = 2^n, \quad n \ge 2$$

The homogeneous solution is $a_n^{(h)} = C_1(-1)^n + C_2 2^n$.

Here is an example of that:

$$a_n - a_{n-1} - 2a_{n-2} = 2^n, \quad n \ge 2$$

The homogeneous solution is $a_n^{(h)} = C_1(-1)^n + C_2 2^n$. Here's what happens if we try $a_n = A2^n$:

$$A2^{n} - A2^{n-1} - 2A2^{n-2} = 2^{n}$$
$$(A - A2^{-1} - 2A2^{-2})2^{n} = 2^{n}$$
$$(A - A/2 - 2A/4) = 1$$
$$0 = 1$$

Here is an example of that:

$$a_n - a_{n-1} - 2a_{n-2} = 2^n, \quad n \ge 2$$

The homogeneous solution is $a_n^{(h)} = C_1(-1)^n + C_2 2^n$. Here's what happens if we try $a_n = A2^n$:

$$A2^{n} - A2^{n-1} - 2A2^{n-2} = 2^{n}$$
$$(A - A2^{-1} - 2A2^{-2})2^{n} = 2^{n}$$
$$(A - A/2 - 2A/4) = 1$$
$$0 = 1$$

This is something we could have predicted: Since $A2^n$ is a solution of the homogeneous equation, putting it in the recurrence relation will produce a zero on the left side.

There is a way out: when this happens, multiply the form of the particular solution by n.

There is a way out: when this happens, multiply the form of the particular solution by n. In the above example we should try $a_n = An2^n$ (and, as always, $a_{n-1} = A(n-1)2^{n-1}$ and $a_{n-2} = A(n-2)2^{n-2}$). Then the recurrence relation

$$a_n - a_{n-1} - 2a_{n-2} = 2^n$$

There is a way out: when this happens, multiply the form of the particular solution by n. In the above example we should try $a_n = An2^n$ (and, as always, $a_{n-1} = A(n-1)2^{n-1}$ and $a_{n-2} = A(n-2)2^{n-2}$). Then the recurrence relation

$$a_n - a_{n-1} - 2a_{n-2} = 2^n$$

gives us

$$An2^{n} - A(n-1)2^{n-1} - 2A(n-2)2^{n-2} = 2^{n}$$
$$[An - A(n-1)2^{-1} - 2A(n-2)2^{-2}]2^{n} = 2^{n}$$
$$An - (A/2)(n-1) - (A/2)(n-2) = 1$$
$$An - (A/2)n + A/2 - (A/2)n + A = 1$$
$$3A/2 = 1$$

There is a way out: when this happens, multiply the form of the particular solution by n. In the above example we should try $a_n = An2^n$ (and, as always, $a_{n-1} = A(n-1)2^{n-1}$ and $a_{n-2} = A(n-2)2^{n-2}$). Then the recurrence relation

$$a_n - a_{n-1} - 2a_{n-2} = 2^n$$

gives us

$$An2^{n} - A(n-1)2^{n-1} - 2A(n-2)2^{n-2} = 2^{n}$$
$$[An - A(n-1)2^{-1} - 2A(n-2)2^{-2}]2^{n} = 2^{n}$$
$$An - (A/2)(n-1) - (A/2)(n-2) = 1$$
$$An - (A/2)n + A/2 - (A/2)n + A = 1$$
$$3A/2 = 1$$

so A = 2/3 and $a_n^{(p)} = (2/3)n2^n$, general solution $a_n = C_1(-1)^n + C_22^n + (2/3)n2^n$.

$$C_1 + C_2 + 0 = 0$$
$$-C_1 + 2C_2 + 4/3 = 0$$

$$C_1 + C_2 + 0 = 0$$
$$-C_1 + 2C_2 + 4/3 = 0$$

giving $C_1 = 4/9$ and $C_2 = -4/9$ for a completed solution $a_n = (4/9)(-1)^n + (-4/9)2^n + (2/3)n2^n$.

$$C_1 + C_2 + 0 = 0$$
$$-C_1 + 2C_2 + 4/3 = 0$$

giving $C_1 = 4/9$ and $C_2 = -4/9$ for a completed solution $a_n = (4/9)(-1)^n + (-4/9)2^n + (2/3)n2^n$.

There is a general rule. If any term of the proposed particular solution is a solution of the homogeneous equation, then multiply by n. If the new proposed solution has the same problem, multiply by n again.

$$C_1 + C_2 + 0 = 0$$
$$-C_1 + 2C_2 + 4/3 = 0$$

giving $C_1 = 4/9$ and $C_2 = -4/9$ for a completed solution $a_n = (4/9)(-1)^n + (-4/9)2^n + (2/3)n2^n$.

There is a general rule. If any term of the proposed particular solution is a solution of the homogeneous equation, then multiply by n. If the new proposed solution has the same problem, multiply by n again.

An example:

$$a_n - 4a_{n-1} + 4a_{n-2} = 5n2^n$$

$$C_1 + C_2 + 0 = 0$$
$$-C_1 + 2C_2 + 4/3 = 0$$

giving $C_1 = 4/9$ and $C_2 = -4/9$ for a completed solution $a_n = (4/9)(-1)^n + (-4/9)2^n + (2/3)n2^n$.

There is a general rule. If any term of the proposed particular solution is a solution of the homogeneous equation, then multiply by n. If the new proposed solution has the same problem, multiply by n again.

An example:

$$a_n - 4a_{n-1} + 4a_{n-2} = 5n2^n$$

The homogeneous solution is $a_n^{(h)} = C_1 2^n + C_2 n 2^n$. The form of the solution given by the table is $(An + B)2^n = An2^n + B2^n$.

Both terms of $An2^n + B2^n$ are solutions of the homogeneous equation so we multiply by n and consider $An^22^n + Bn2^n$.

Both terms of $An2^n + B2^n$ are solutions of the homogeneous equation so we multiply by n and consider $An^22^n + Bn2^n$. The second term is a solution of the homogeneous equation so we multiply by n again and use $a_n^{(p)} = An^32^n + Bn^22^n$.

Both terms of $An2^n + B2^n$ are solutions of the homogeneous equation so we multiply by n and consider $An^22^n + Bn2^n$. The second term is a solution of the homogeneous equation so we multiply by n again and use $a_n^{(p)} = An^32^n + Bn^22^n$.

One final point: we can also handle right sides that are sums of things in the table.

Both terms of $An2^n + B2^n$ are solutions of the homogeneous equation so we multiply by n and consider $An^22^n + Bn2^n$. The second term is a solution of the homogeneous equation so we multiply by n again and use $a_n^{(p)} = An^32^n + Bn^22^n$.

One final point: we can also handle right sides that are sums of things in the table. The basis for this is the following general principle:

Theorem

If you find particular solutions for

$$a_n + ba_{n-1} + ca_{n-2} = f(n)$$
 and for $a_n + ba_{n-1} + ca_{n-2} = g(n)$

then their sum will be a particular solution of

$$a_n + ba_{n-1} + ca_{n-2} = f(n) + g(n)$$

$$a_n - a_{n-1} - 2a_{n-2} = 4n$$

and got a particular solution $a_n^{(p)} = -2n - 5$.

$$a_n - a_{n-1} - 2a_{n-2} = 4n$$

and got a particular solution $a_n^{(p)} = -2n - 5$. Later we looked at

$$a_n - a_{n-1} - 2a_{n-2} = 2^n$$

and got a particular solution $a_n^{(p)} = (2/3)n2^n$.

$$a_n - a_{n-1} - 2a_{n-2} = 4n$$

and got a particular solution $a_n^{(p)} = -2n - 5$. Later we looked at

$$a_n - a_{n-1} - 2a_{n-2} = 2^n$$

and got a particular solution $a_n^{(p)} = (2/3)n2^n$. This means that for

$$a_n - a_{n-1} - 2a_{n-2} = 4n + 2^n$$

a particular solution is $a_n^{(p)} = -2n - 5 + (2/3)n2^n$.

$$a_n - a_{n-1} - 2a_{n-2} = 4n$$

and got a particular solution $a_n^{(p)} = -2n - 5$. Later we looked at

$$a_n - a_{n-1} - 2a_{n-2} = 2^n$$

and got a particular solution $a_n^{(p)} = (2/3)n2^n$. This means that for

$$a_n - a_{n-1} - 2a_{n-2} = 4n + 2^n$$

a particular solution is $a_n^{(p)} = -2n - 5 + (2/3)n2^n$. And of course the general solution is

 $a_n = a_n^{(h)} + a_n^{(p)} = C_1(-1)^n + C_2 2^n - 2n - 5 + (2/3)n2^n.$

$$a_n - 3a_{n-1} + 2a_{n-2} = 4 + (2)3^n, \quad n \ge 2$$

 $a_0 = 0, \ a_1 = 1.$

$$a_n - 3a_{n-1} + 2a_{n-2} = 4 + (2)3^n, \quad n \ge 2$$

 $a_0 = 0, \ a_1 = 1.$

Let's first find the homogeneous solution. The roots of $r^2 - 3r + 2 = 0$ are r = 1, 2 and so $a_n^{(h)} = C_1 + C_2 2^n$.

$$a_n - 3a_{n-1} + 2a_{n-2} = 4 + (2)3^n, \quad n \ge 2$$

 $a_0 = 0, \ a_1 = 1.$

Let's first find the homogeneous solution. The roots of $r^2 - 3r + 2 = 0$ are r = 1, 2 and so $a_n^{(h)} = C_1 + C_2 2^n$.

Lets find a particular solution for

$$a_n - 3a_{n-1} + 2a_{n-2} = 4$$

$$a_n - 3a_{n-1} + 2a_{n-2} = 4 + (2)3^n, \quad n \ge 2$$

 $a_0 = 0, \ a_1 = 1.$

Let's first find the homogeneous solution. The roots of $r^2 - 3r + 2 = 0$ are r = 1, 2 and so $a_n^{(h)} = C_1 + C_2 2^n$.

Lets find a particular solution for

$$a_n - 3a_{n-1} + 2a_{n-2} = 4$$

Putting $a_n = A$ won't work because a constant is a solution of the homogeneous equation. Thus we use An.

$$a_n - 3a_{n-1} + 2a_{n-2} = 4 + (2)3^n, \quad n \ge 2$$

 $a_0 = 0, \ a_1 = 1.$

Let's first find the homogeneous solution. The roots of $r^2 - 3r + 2 = 0$ are r = 1, 2 and so $a_n^{(h)} = C_1 + C_2 2^n$.

Lets find a particular solution for

$$a_n - 3a_{n-1} + 2a_{n-2} = 4$$

Putting $a_n = A$ won't work because a constant is a solution of the homogeneous equation. Thus we use An. This gives

$$An - 3A(n-1) + 2A(n-2) = 4$$

 $-A = 4$

so A = -4 and An = -4n is the corresponding particular solution.

$$a_n - 3a_{n-1} + 2a_{n-2} = (2)3^n$$

$$a_n - 3a_{n-1} + 2a_{n-2} = (2)3^n$$

Putting $a_n = A3^n$ gives us A - 3A/3 + 2A/9 = 2 or A = 9. So, this particular solution is $(9)3^n$.

$$a_n - 3a_{n-1} + 2a_{n-2} = (2)3^n$$

Putting $a_n = A3^n$ gives us A - 3A/3 + 2A/9 = 2 or A = 9. So, this particular solution is $(9)3^n$.

Adding these gives $a_n^{(p)} = -4n + (9)3^n$. and so the general solution of

$$a_n - 3a_{n-1} + 2a_{n-2} = 4 + (2)3^n, n \ge 2$$

 $a_0 = 0, a_1 = 1.$

is $a_n = C_1 + C_2 2^n - 4n + (9)3^n$.

$$a_n - 3a_{n-1} + 2a_{n-2} = (2)3^n$$

Putting $a_n = A3^n$ gives us A - 3A/3 + 2A/9 = 2 or A = 9. So, this particular solution is $(9)3^n$.

Adding these gives $a_n^{(p)} = -4n + (9)3^n$. and so the general solution of

$$a_n - 3a_{n-1} + 2a_{n-2} = 4 + (2)3^n, n \ge 2$$

 $a_0 = 0, a_1 = 1.$

is $a_n = C_1 + C_2 2^n - 4n + (9)3^n$. The equations for C_1 and C_2 are

$$C_1 + C_2 + 9 = 0$$
$$C_1 + 2C_2 + 23 = 1$$

giving $C_1 = 4$, $C_2 = -13$

$$a_n - 3a_{n-1} + 2a_{n-2} = (2)3^n$$

Putting $a_n = A3^n$ gives us A - 3A/3 + 2A/9 = 2 or A = 9. So, this particular solution is $(9)3^n$.

Adding these gives $a_n^{(p)} = -4n + (9)3^n$. and so the general solution of

$$a_n - 3a_{n-1} + 2a_{n-2} = 4 + (2)3^n, n \ge 2$$

 $a_0 = 0, a_1 = 1.$

is $a_n = C_1 + C_2 2^n - 4n + (9)3^n$. The equations for C_1 and C_2 are

$$C_1 + C_2 + 9 = 0$$
$$C_1 + 2C_2 + 23 = 1$$

giving $C_1 = 4$, $C_2 = -13$ so the completed solution is $a_n = 4 - (13)2^n - 4n + (9)3^n$.