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A few more examples

A recurrence relation with repeated roots:

an − 10an−1 + 25an−2 = 0, n ≥ 2

a0 = 2, a1 = 12.

The characteristic equation r2 − 10r + 25 = 0 has a repeated root r = 5.
The general solution is an = C15

n + C2 n 5n. The equations for C1 and
C2:

C1 = 2

5C1 + 5C2 = 12

have solution C1 = 2 and C2 = 2/5.
The completed solution is an = (2)5n + (2/5)n 5n.
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A recurrence relation with complex roots:

an − 4an−1 + 8an−2 = 0, n ≥ 2

a0 = 2, a1 = 12

The characteristic equation r2 − 4r + 8 = 0 has complex roots r = 2± 2i.

The general solution is an = C1(2 + 2i)n +C2(2− 2i)n. The equations for
C1 and C2:

C1 + C2 = 2

(2 + 2i)C1 + (2− 2i)C2 = 12

can be rewritten

C1 + C2 = 2

C1 − C2 = 8/(2i) = −4i

and have solution C1 = 1− 2i and C2 = 1 + 2i.
The completed solution is an = (1− 2i)(2 + 2i)n + (1 + 2i)(2− 2i)n.
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There is an alternate way to view complex numbers (numbers of the form
α+ βi where α and β are real numbers). For any such number, we
associate the point (α, β).

We can express this point in polar coordinates
ρ, θ such that (α, β) = (ρ cos θ, ρ sin θ) with ρ =

√
α2 + β2 and

θ = cos−1(α/ρ).

Thus α+ βi = ρ(cos θ+ i sin θ). A famous theorem due to Euler says that

(α+ βi)n = ρn(cos θ + i sin θ)n = ρn(cos(nθ) + i sin(nθ))
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Without going into the details, this leads to an alternate description of the
solutions: suppose the roots of the characteristic equation are r = α± βi.

If we let ρ =
√
α2 + β2 and θ = cos−1(α/ρ), then ρn cos(nθ) and

ρn sin(nθ) are basic solutions and

an = ρn[C1 cos(nθ) + C2 sin(nθ)]

is a general solution.

In our example where r = 2± 2i we get ρ =
√
8 = 2

√
2 and

θ = cos−1(1/
√
2) = 45◦ (or π/4 radians). Then the general solution can

be written
an = (2

√
2)n[C1 cos(45n) + C2 sin(45n)]
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The initial conditions of that example (a0 = 2, a1 = 12) give the following
equation for C1 and C2 (note that cos 0 = 1, sin 0 = 0, cos 45◦ =

√
2/2

and sin 45◦ =
√
2/2)

C1 = 2

2C1 + 2C2 = 12

So C1 = 2 and C2 = 4 and the completed solution looks like

an = (2
√
2)n[2 cos(45n) + 4 sin(45n)]

Another example with complex roots, which I will process both ways:

an − 2an−1 + 5an−2 = 0, n ≥ 0

a0 = 0, a1 = 3

Characteristic equation r2 − 2r + 5 = 0, with roots 1± 2i.
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Complex powers method: General solution
an = C1(1 + 2i)n + C2(1− 2i)n.

Initial conditions:

C1 + C2 = 0

(1 + 2i)C1 + (1− 2i)C2 = 3

with solution C1 = −3i/4, C2 = 3i/4.
Completed solution an = (−3i/4)(1 + 2i)n + (3i/4)(1− 2i)n.

Trigonometric functions method: ρ =
√
5, θ = cos−1(1/

√
5). Basic

trigonometry tells us that ρ cos θ = 1 and ρ sin θ = 2.

General solution an = 5n/2[C1 cos(nθ) + C2 sin(nθ)].
Initial conditions:

C1 = 0

C1 + 2C2 = 3

with solution C1 = 0, C2 = 3/2.
Completed solution an = 5n/2(3/2) sin(nθ).
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Something to note about the trigonometric function method: These two
pictures represent the ρ and θ for two examples. The first is where α is
positive and so the point (α, β) is to the right of the y axis The second is
where α is negative and so the point (α, β) is to the left of the y axis

α

β
ρ

θ

(α, β)

O x α

β
ρ

θ

(α, β)

O x

Because ρ cos θ = α and ρ sin θ = β always hold, the initial conditions for
an = ρn[C1 cos(nθ) + C2 sin(nθ)] always simplify to

C1 = a0

αC1 + βC2 = a1
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Nonhomogeneous recurrence relations

The Towers of Hanoi problem is to take a stack of disks and move them
all to another stack using only certain allowed moves. The questions is,
how many moves does it take?

Here is a picture of a possible starting point with 13 disks:

The goal is to move all the disks from the first pole to the last.
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The rules are as follows:

• There are three poles, two of them empty.

• The disks all have a hole in the center and they are stacked on the
first pole. The disks have different sizes and they are stacked in order
of size with the largest on the bottom.

• One disk at a time may be moved from the top of one stack and
placed on any of the other two poles.

• It is not allowed to place a disk on top of a smaller disk.

• The game ends when all the disks are on the third pole
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If it can be done with n− 1 disks, it can be done with n disks: move the
top n− 1 disks to the second pole (exchanging the roles of poles 2 and 3).

Then move the bottom disk to the third pole. Then move the remaining
n− 1 disks onto the third pole (exchanging the roles of poles 1 and 2).

How many moves does it take? Let an be the number of moves for n
disks. The above process requires an−1 moves to get the top n− 1 disks
from pole 1 to 2, then 1 move to get the bottom disk from 1 to 3 and
then an−1 moves to get the other n− 1 disks from 2 to 3.

That is

an = 2an−1 + 1, n ≥ 1

a0 = 0.
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The problem is first order linear, but the equation is not homogeneous:

an − 2an−1 = 1, n ≥ 1

a0 = 0

If we eliminate the 1 on the right side we get what is called the associated
homogeneous recurrence relation:

an − 2an−1 = 0

This has characteristic equation r − 2 = 0 with the root r = 2 and so the
general solution is an = C12

n. However, this doesn’t solve the original
nonhomogeneous equation.
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Suppose we had two solutions of the original recurrence relation
an − 2an−1 = 1.

That is, suppose f(n) and g(n) satisfy

f(n)− 2f(n− 1) = 1 for all n ≥ 1

and
g(n)− 2g(n− 1) = 1 for all n ≥ 1

If we subtract these equations we get

(f(n)− g(n))− 2(f(n− 1)− g(n− 1)) = 0 holds for all n ≥ 1

This says that f(n)− g(n) satisfies the the associated homogeneous
recurrence relation. Therefore, f(n)− g(n) = C12

n or
f(n) = C12

n + g(n).

This exemplifies a general rule: to find the general solution of a
nonhomogeneous recurrence relation, just find one solution and add it to
the general solution of the associated homogeneous recurrence relation.
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To see how we can use this, we examine our recurrence relation:

an − 2an−1 = 1

and remark that since the right side is constant, we need the left side to
be constant, so perhaps letting an be a constant will give us a solution.

But what constant will work? One way to find out is to set an = A where
A is some constant yet to be determined. Putting this in the recurrence
relation, with an−1 = A as well, we get

A− 2A = 1

This just says −A = 1 and we can solve this to get A = −1. This says
that an = −1 is one solution.

Following our previous discussion, we know that all other solutions have
the form an = C12

n − 1. Now that we have the general solution, we can
impose the initial condition to find C1:

C12
0 − 1 = 0 or C1 = 1.
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Thus we obtain the solution an = 2n − 1.

A significant step in the solution was to seemingly guess what the form of
a solution might be. That is, we guessed that the solution should look
something like the right hand side of the recurrence relation.

This actually works surprisingly often. As an example, lets work through
the following. For the moment, lets not even mention initial conditions.

an − 4an−1 + 3an−2 = (3)2n, n ≥ 2

Step 1: Find the general solution of the homogeneous version:

an − 4an−1 + 3an−2 = 0, n ≥ 2

To keep straight which expressions solve which equations, we’ll call this

the homogeneous solution and denote it by a
(h)
n .
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The characteristic equation r2 − 4r + 3 = 0 has roots 3 and 1 so

a(h)n = C13
n + C2.

Step 2: Find any one solution of the original recurrence relation. This is

referred to as a particular solution and so we denote it by a
(p)
n .

We examine the right side of our recurrence relation, (3)2n, and reason as
follows: if we substitute a constant times 2n for an then the left side will
produce three terms with 2n in each, so this will have a chance of adding
up to (3)2n.

Thus, we should set an = A2n and run this through the equation to see
what A should be.
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If an = A2n then an−1 = A2n−1 and an−2 = A2n−2. Putting these in
an − 4an−1 + 3an−2 = (3)2n gives

A2n − 4A2n−1 + 3A2n−2 = (3)2n

[A− 4A2−1 + 3A2−2]2n = (3)2n

A− 2A+ (3/4)A = 3

−(1/4)A = 3

A = −12

So we conclude a
(p)
n = (−12)2n.

Step 3: Add the 2 parts together to get the general solution. The general

solution is an = a
(h)
n + a

(p)
n = C13

n + C2 − (12)2n.
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When initial conditions are present there is a final step.

Step 4: Use the initial conditions to find, and then fill in, the constants.

Lets illustrate this for the current problem. Here are some simple initial
conditions

an − 4an−1 + 3an−2 = (3)2n, n ≥ 2

a0 = 0, a1 = 0.

We obtain C1 and C2 by putting n = 0 and 1 into our general solution
an = C13

n + C2 − (12)2n:

C1 + C2 − 12 = 0

3C1 + C2 − 24 = 0

This has solutions C1 = 6 and C2 = 6.

Therefore, the completed solution is an = (6)3n + 6− (12)2n.
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