Recurrence Relations

Daniel H. Luecking

October 4, 2023

A few more examples
A recurrence relation with repeated roots:

$$
\begin{aligned}
& a_{n}-10 a_{n-1}+25 a_{n-2}=0, \quad n \geq 2 \\
& \quad a_{0}=2, a_{1}=12
\end{aligned}
$$

A few more examples

A recurrence relation with repeated roots:

$$
\begin{aligned}
& a_{n}-10 a_{n-1}+25 a_{n-2}=0, \quad n \geq 2 \\
& \quad a_{0}=2, a_{1}=12
\end{aligned}
$$

The characteristic equation $r^{2}-10 r+25=0$ has a repeated root $r=5$.

A few more examples

A recurrence relation with repeated roots:

$$
\begin{aligned}
& a_{n}-10 a_{n-1}+25 a_{n-2}=0, \quad n \geq 2 \\
& \quad a_{0}=2, a_{1}=12
\end{aligned}
$$

The characteristic equation $r^{2}-10 r+25=0$ has a repeated root $r=5$. The general solution is $a_{n}=C_{1} 5^{n}+C_{2} n 5^{n}$.

A few more examples

A recurrence relation with repeated roots:

$$
\begin{aligned}
& a_{n}-10 a_{n-1}+25 a_{n-2}=0, \quad n \geq 2 \\
& \quad a_{0}=2, a_{1}=12
\end{aligned}
$$

The characteristic equation $r^{2}-10 r+25=0$ has a repeated root $r=5$. The general solution is $a_{n}=C_{1} 5^{n}+C_{2} n 5^{n}$. The equations for C_{1} and C_{2} :

$$
\begin{array}{cl}
C_{1} & =2 \\
5 C_{1}+5 C_{2} & =12
\end{array}
$$

have solution $C_{1}=2$ and $C_{2}=2 / 5$.

A few more examples

A recurrence relation with repeated roots:

$$
\begin{aligned}
& a_{n}-10 a_{n-1}+25 a_{n-2}=0, \quad n \geq 2 \\
& \quad a_{0}=2, a_{1}=12
\end{aligned}
$$

The characteristic equation $r^{2}-10 r+25=0$ has a repeated root $r=5$. The general solution is $a_{n}=C_{1} 5^{n}+C_{2} n 5^{n}$. The equations for C_{1} and C_{2} :

$$
\begin{array}{cl}
C_{1} & =2 \\
5 C_{1}+5 C_{2} & =12
\end{array}
$$

have solution $C_{1}=2$ and $C_{2}=2 / 5$.
The completed solution is $a_{n}=(2) 5^{n}+(2 / 5) n 5^{n}$.

A recurrence relation with complex roots:

$$
\begin{aligned}
& a_{n}-4 a_{n-1}+8 a_{n-2}=0, \quad n \geq 2 \\
& \quad a_{0}=2, a_{1}=12
\end{aligned}
$$

The characteristic equation $r^{2}-4 r+8=0$ has complex roots $r=2 \pm 2 i$.

A recurrence relation with complex roots:

$$
\begin{aligned}
& a_{n}-4 a_{n-1}+8 a_{n-2}=0, \quad n \geq 2 \\
& \quad a_{0}=2, a_{1}=12
\end{aligned}
$$

The characteristic equation $r^{2}-4 r+8=0$ has complex roots $r=2 \pm 2 i$. The general solution is $a_{n}=C_{1}(2+2 i)^{n}+C_{2}(2-2 i)^{n}$.

A recurrence relation with complex roots:

$$
\begin{aligned}
& a_{n}-4 a_{n-1}+8 a_{n-2}=0, \quad n \geq 2 \\
& \quad a_{0}=2, a_{1}=12
\end{aligned}
$$

The characteristic equation $r^{2}-4 r+8=0$ has complex roots $r=2 \pm 2 i$. The general solution is $a_{n}=C_{1}(2+2 i)^{n}+C_{2}(2-2 i)^{n}$. The equations for C_{1} and C_{2} :

$$
\begin{aligned}
C_{1}+\quad C_{2} & =2 \\
(2+2 i) C_{1}+(2-2 i) C_{2} & =12
\end{aligned}
$$

can be rewritten

$$
\begin{aligned}
& C_{1}+C_{2}=2 \\
& C_{1}-C_{2}=8 /(2 i)=-4 i
\end{aligned}
$$

and have solution $C_{1}=1-2 i$ and $C_{2}=1+2 i$.

A recurrence relation with complex roots:

$$
\begin{aligned}
& a_{n}-4 a_{n-1}+8 a_{n-2}=0, \quad n \geq 2 \\
& \quad a_{0}=2, a_{1}=12
\end{aligned}
$$

The characteristic equation $r^{2}-4 r+8=0$ has complex roots $r=2 \pm 2 i$. The general solution is $a_{n}=C_{1}(2+2 i)^{n}+C_{2}(2-2 i)^{n}$. The equations for C_{1} and C_{2} :

$$
\begin{aligned}
C_{1}+\quad C_{2} & =2 \\
(2+2 i) C_{1}+(2-2 i) C_{2} & =12
\end{aligned}
$$

can be rewritten

$$
\begin{aligned}
& C_{1}+C_{2}=2 \\
& C_{1}-C_{2}=8 /(2 i)=-4 i
\end{aligned}
$$

and have solution $C_{1}=1-2 i$ and $C_{2}=1+2 i$.
The completed solution is $a_{n}=(1-2 i)(2+2 i)^{n}+(1+2 i)(2-2 i)^{n}$.

There is an alternate way to view complex numbers (numbers of the form $\alpha+\beta i$ where α and β are real numbers). For any such number, we associate the point (α, β).

There is an alternate way to view complex numbers (numbers of the form $\alpha+\beta i$ where α and β are real numbers). For any such number, we associate the point (α, β). We can express this point in polar coordinates ρ, θ such that $(\alpha, \beta)=(\rho \cos \theta, \rho \sin \theta)$ with $\rho=\sqrt{\alpha^{2}+\beta^{2}}$ and $\theta=\cos ^{-1}(\alpha / \rho)$.

There is an alternate way to view complex numbers (numbers of the form $\alpha+\beta i$ where α and β are real numbers). For any such number, we associate the point (α, β). We can express this point in polar coordinates ρ, θ such that $(\alpha, \beta)=(\rho \cos \theta, \rho \sin \theta)$ with $\rho=\sqrt{\alpha^{2}+\beta^{2}}$ and $\theta=\cos ^{-1}(\alpha / \rho)$.
Thus $\alpha+\beta i=\rho(\cos \theta+i \sin \theta)$. A famous theorem due to Euler says that

$$
(\alpha+\beta i)^{n}=\rho^{n}(\cos \theta+i \sin \theta)^{n}=\rho^{n}(\cos (n \theta)+i \sin (n \theta))
$$

Without going into the details, this leads to an alternate description of the solutions: suppose the roots of the characteristic equation are $r=\alpha \pm \beta i$.

Without going into the details, this leads to an alternate description of the solutions: suppose the roots of the characteristic equation are $r=\alpha \pm \beta i$. If we let $\rho=\sqrt{\alpha^{2}+\beta^{2}}$ and $\theta=\cos ^{-1}(\alpha / \rho)$, then $\rho^{n} \cos (n \theta)$ and $\rho^{n} \sin (n \theta)$ are basic solutions

Without going into the details, this leads to an alternate description of the solutions: suppose the roots of the characteristic equation are $r=\alpha \pm \beta i$. If we let $\rho=\sqrt{\alpha^{2}+\beta^{2}}$ and $\theta=\cos ^{-1}(\alpha / \rho)$, then $\rho^{n} \cos (n \theta)$ and $\rho^{n} \sin (n \theta)$ are basic solutions and

$$
a_{n}=\rho^{n}\left[C_{1} \cos (n \theta)+C_{2} \sin (n \theta)\right]
$$

is a general solution.

Without going into the details, this leads to an alternate description of the solutions: suppose the roots of the characteristic equation are $r=\alpha \pm \beta i$. If we let $\rho=\sqrt{\alpha^{2}+\beta^{2}}$ and $\theta=\cos ^{-1}(\alpha / \rho)$, then $\rho^{n} \cos (n \theta)$ and $\rho^{n} \sin (n \theta)$ are basic solutions and

$$
a_{n}=\rho^{n}\left[C_{1} \cos (n \theta)+C_{2} \sin (n \theta)\right]
$$

is a general solution.
In our example where $r=2 \pm 2 i$ we get $\rho=\sqrt{8}=2 \sqrt{2}$ and $\theta=\cos ^{-1}(1 / \sqrt{2})=45^{\circ}$ (or $\pi / 4$ radians).

Without going into the details, this leads to an alternate description of the solutions: suppose the roots of the characteristic equation are $r=\alpha \pm \beta i$. If we let $\rho=\sqrt{\alpha^{2}+\beta^{2}}$ and $\theta=\cos ^{-1}(\alpha / \rho)$, then $\rho^{n} \cos (n \theta)$ and $\rho^{n} \sin (n \theta)$ are basic solutions and

$$
a_{n}=\rho^{n}\left[C_{1} \cos (n \theta)+C_{2} \sin (n \theta)\right]
$$

is a general solution.
In our example where $r=2 \pm 2 i$ we get $\rho=\sqrt{8}=2 \sqrt{2}$ and $\theta=\cos ^{-1}(1 / \sqrt{2})=45^{\circ}$ (or $\pi / 4$ radians). Then the general solution can be written

$$
a_{n}=(2 \sqrt{2})^{n}\left[C_{1} \cos (45 n)+C_{2} \sin (45 n)\right]
$$

The initial conditions of that example ($a_{0}=2, a_{1}=12$) give the following equation for C_{1} and C_{2} (note that $\cos 0=1, \sin 0=0, \cos 45^{\circ}=\sqrt{2} / 2$ and $\sin 45^{\circ}=\sqrt{2} / 2$)

$$
\begin{array}{cc}
C_{1} & =2 \\
2 C_{1}+2 C_{2} & =12
\end{array}
$$

The initial conditions of that example ($a_{0}=2, a_{1}=12$) give the following equation for C_{1} and C_{2} (note that $\cos 0=1, \sin 0=0, \cos 45^{\circ}=\sqrt{2} / 2$ and $\sin 45^{\circ}=\sqrt{2} / 2$)

$$
\begin{aligned}
C_{1} & =2 \\
2 C_{1}+2 C_{2} & =12
\end{aligned}
$$

So $C_{1}=2$ and $C_{2}=4$ and the completed solution looks like

$$
a_{n}=(2 \sqrt{2})^{n}[2 \cos (45 n)+4 \sin (45 n)]
$$

The initial conditions of that example ($a_{0}=2, a_{1}=12$) give the following equation for C_{1} and C_{2} (note that $\cos 0=1, \sin 0=0, \cos 45^{\circ}=\sqrt{2} / 2$ and $\sin 45^{\circ}=\sqrt{2} / 2$)

$$
\begin{aligned}
C_{1} & =2 \\
2 C_{1}+2 C_{2} & =12
\end{aligned}
$$

So $C_{1}=2$ and $C_{2}=4$ and the completed solution looks like

$$
a_{n}=(2 \sqrt{2})^{n}[2 \cos (45 n)+4 \sin (45 n)]
$$

Another example with complex roots, which I will process both ways:

$$
\begin{aligned}
& a_{n}-2 a_{n-1}+5 a_{n-2}=0, \quad n \geq 0 \\
& \quad a_{0}=0, a_{1}=3
\end{aligned}
$$

Characteristic equation $r^{2}-2 r+5=0$, with roots $1 \pm 2 i$.

Complex powers method: General solution $a_{n}=C_{1}(1+2 i)^{n}+C_{2}(1-2 i)^{n}$.

Complex powers method: General solution $a_{n}=C_{1}(1+2 i)^{n}+C_{2}(1-2 i)^{n}$. Initial conditions:

$$
\begin{aligned}
C_{1}+\quad C_{2} & =0 \\
(1+2 i) C_{1}+(1-2 i) C_{2} & =3
\end{aligned}
$$

with solution $C_{1}=-3 i / 4, C_{2}=3 i / 4$.

Complex powers method: General solution
$a_{n}=C_{1}(1+2 i)^{n}+C_{2}(1-2 i)^{n}$.
Initial conditions:

$$
\begin{aligned}
C_{1}+\quad C_{2} & =0 \\
(1+2 i) C_{1}+(1-2 i) C_{2} & =3
\end{aligned}
$$

with solution $C_{1}=-3 i / 4, C_{2}=3 i / 4$.
Completed solution $a_{n}=(-3 i / 4)(1+2 i)^{n}+(3 i / 4)(1-2 i)^{n}$.

Complex powers method: General solution
$a_{n}=C_{1}(1+2 i)^{n}+C_{2}(1-2 i)^{n}$.
Initial conditions:

$$
\begin{aligned}
C_{1}+\quad C_{2} & =0 \\
(1+2 i) C_{1}+(1-2 i) C_{2} & =3
\end{aligned}
$$

with solution $C_{1}=-3 i / 4, C_{2}=3 i / 4$.
Completed solution $a_{n}=(-3 i / 4)(1+2 i)^{n}+(3 i / 4)(1-2 i)^{n}$.
Trigonometric functions method: $\rho=\sqrt{5}, \theta=\cos ^{-1}(1 / \sqrt{5})$. Basic trigonometry tells us that $\rho \cos \theta=1$ and $\rho \sin \theta=2$.

Complex powers method: General solution
$a_{n}=C_{1}(1+2 i)^{n}+C_{2}(1-2 i)^{n}$.
Initial conditions:

$$
\begin{aligned}
C_{1}+\quad C_{2} & =0 \\
(1+2 i) C_{1}+(1-2 i) C_{2} & =3
\end{aligned}
$$

with solution $C_{1}=-3 i / 4, C_{2}=3 i / 4$.
Completed solution $a_{n}=(-3 i / 4)(1+2 i)^{n}+(3 i / 4)(1-2 i)^{n}$.
Trigonometric functions method: $\rho=\sqrt{5}, \theta=\cos ^{-1}(1 / \sqrt{5})$. Basic trigonometry tells us that $\rho \cos \theta=1$ and $\rho \sin \theta=2$.
General solution $a_{n}=5^{n / 2}\left[C_{1} \cos (n \theta)+C_{2} \sin (n \theta)\right]$.

Complex powers method: General solution
$a_{n}=C_{1}(1+2 i)^{n}+C_{2}(1-2 i)^{n}$.
Initial conditions:

$$
\begin{aligned}
C_{1}+\quad C_{2} & =0 \\
(1+2 i) C_{1}+(1-2 i) C_{2} & =3
\end{aligned}
$$

with solution $C_{1}=-3 i / 4, C_{2}=3 i / 4$.
Completed solution $a_{n}=(-3 i / 4)(1+2 i)^{n}+(3 i / 4)(1-2 i)^{n}$.
Trigonometric functions method: $\rho=\sqrt{5}, \theta=\cos ^{-1}(1 / \sqrt{5})$. Basic trigonometry tells us that $\rho \cos \theta=1$ and $\rho \sin \theta=2$.
General solution $a_{n}=5^{n / 2}\left[C_{1} \cos (n \theta)+C_{2} \sin (n \theta)\right]$. Initial conditions:

$$
\begin{aligned}
& C_{1}=0 \\
& C_{1}+2 C_{2}=3
\end{aligned}
$$

with solution $C_{1}=0, C_{2}=3 / 2$.

Complex powers method: General solution
$a_{n}=C_{1}(1+2 i)^{n}+C_{2}(1-2 i)^{n}$.
Initial conditions:

$$
\begin{aligned}
C_{1}+\quad C_{2} & =0 \\
(1+2 i) C_{1}+(1-2 i) C_{2} & =3
\end{aligned}
$$

with solution $C_{1}=-3 i / 4, C_{2}=3 i / 4$.
Completed solution $a_{n}=(-3 i / 4)(1+2 i)^{n}+(3 i / 4)(1-2 i)^{n}$.
Trigonometric functions method: $\rho=\sqrt{5}, \theta=\cos ^{-1}(1 / \sqrt{5})$. Basic trigonometry tells us that $\rho \cos \theta=1$ and $\rho \sin \theta=2$.
General solution $a_{n}=5^{n / 2}\left[C_{1} \cos (n \theta)+C_{2} \sin (n \theta)\right]$. Initial conditions:

$$
\begin{aligned}
& C_{1}=0 \\
& C_{1}+2 C_{2}=3
\end{aligned}
$$

with solution $C_{1}=0, C_{2}=3 / 2$.
Completed solution $a_{n}=5^{n / 2}(3 / 2) \sin (n \theta)$.

Something to note about the trigonometric function method: These two pictures represent the ρ and θ for two examples. The first is where α is positive and so the point (α, β) is to the right of the y axis The second is where α is negative and so the point (α, β) is to the left of the y axis

Something to note about the trigonometric function method: These two pictures represent the ρ and θ for two examples. The first is where α is positive and so the point (α, β) is to the right of the y axis The second is where α is negative and so the point (α, β) is to the left of the y axis

Because $\rho \cos \theta=\alpha$ and $\rho \sin \theta=\beta$ always hold, the initial conditions for $a_{n}=\rho^{n}\left[C_{1} \cos (n \theta)+C_{2} \sin (n \theta)\right]$ always simplify to

$$
\begin{aligned}
C_{1} & =a_{0} \\
\alpha C_{1}+\beta C_{2} & =a_{1}
\end{aligned}
$$

Nonhomogeneous recurrence relations

The Towers of Hanoi problem is to take a stack of disks and move them all to another stack using only certain allowed moves. The questions is, how many moves does it take?

Nonhomogeneous recurrence relations

The Towers of Hanoi problem is to take a stack of disks and move them all to another stack using only certain allowed moves. The questions is, how many moves does it take?
Here is a picture of a possible starting point with 13 disks:

The goal is to move all the disks from the first pole to the last.

The rules are as follows:

- There are three poles, two of them empty.

The rules are as follows:

- There are three poles, two of them empty.
- The disks all have a hole in the center and they are stacked on the first pole. The disks have different sizes and they are stacked in order of size with the largest on the bottom.

The rules are as follows:

- There are three poles, two of them empty.
- The disks all have a hole in the center and they are stacked on the first pole. The disks have different sizes and they are stacked in order of size with the largest on the bottom.
- One disk at a time may be moved from the top of one stack and placed on any of the other two poles.

The rules are as follows:

- There are three poles, two of them empty.
- The disks all have a hole in the center and they are stacked on the first pole. The disks have different sizes and they are stacked in order of size with the largest on the bottom.
- One disk at a time may be moved from the top of one stack and placed on any of the other two poles.
- It is not allowed to place a disk on top of a smaller disk.

The rules are as follows:

- There are three poles, two of them empty.
- The disks all have a hole in the center and they are stacked on the first pole. The disks have different sizes and they are stacked in order of size with the largest on the bottom.
- One disk at a time may be moved from the top of one stack and placed on any of the other two poles.
- It is not allowed to place a disk on top of a smaller disk.
- The game ends when all the disks are on the third pole

If it can be done with $n-1$ disks, it can be done with n disks: move the top $n-1$ disks to the second pole (exchanging the roles of poles 2 and 3).

If it can be done with $n-1$ disks, it can be done with n disks: move the top $n-1$ disks to the second pole (exchanging the roles of poles 2 and 3). Then move the bottom disk to the third pole.

If it can be done with $n-1$ disks, it can be done with n disks: move the top $n-1$ disks to the second pole (exchanging the roles of poles 2 and 3). Then move the bottom disk to the third pole. Then move the remaining $n-1$ disks onto the third pole (exchanging the roles of poles 1 and 2).

If it can be done with $n-1$ disks, it can be done with n disks: move the top $n-1$ disks to the second pole (exchanging the roles of poles 2 and 3). Then move the bottom disk to the third pole. Then move the remaining $n-1$ disks onto the third pole (exchanging the roles of poles 1 and 2). How many moves does it take? Let a_{n} be the number of moves for n disks.

If it can be done with $n-1$ disks, it can be done with n disks: move the top $n-1$ disks to the second pole (exchanging the roles of poles 2 and 3). Then move the bottom disk to the third pole. Then move the remaining $n-1$ disks onto the third pole (exchanging the roles of poles 1 and 2). How many moves does it take? Let a_{n} be the number of moves for n disks. The above process requires a_{n-1} moves to get the top $n-1$ disks from pole 1 to 2 , then 1 move to get the bottom disk from 1 to 3 and then a_{n-1} moves to get the other $n-1$ disks from 2 to 3 .
That is

$$
\begin{aligned}
& a_{n}=2 a_{n-1}+1, \quad n \geq 1 \\
& a_{0}=0 .
\end{aligned}
$$

The problem is first order linear, but the equation is not homogeneous:

$$
\begin{gathered}
a_{n}-2 a_{n-1}=1, \quad n \geq 1 \\
a_{0}=0
\end{gathered}
$$

The problem is first order linear, but the equation is not homogeneous:

$$
\begin{aligned}
& a_{n}-2 a_{n-1}=1, \quad n \geq 1 \\
& \quad a_{0}=0
\end{aligned}
$$

If we eliminate the 1 on the right side we get what is called the associated homogeneous recurrence relation:

$$
a_{n}-2 a_{n-1}=0
$$

The problem is first order linear, but the equation is not homogeneous:

$$
\begin{aligned}
& a_{n}-2 a_{n-1}=1, \quad n \geq 1 \\
& \quad a_{0}=0
\end{aligned}
$$

If we eliminate the 1 on the right side we get what is called the associated homogeneous recurrence relation:

$$
a_{n}-2 a_{n-1}=0
$$

This has characteristic equation $r-2=0$ with the root $r=2$ and so the general solution is $a_{n}=C_{1} 2^{n}$. However, this doesn't solve the original nonhomogeneous equation.

Suppose we had two solutions of the original recurrence relation $a_{n}-2 a_{n-1}=1$.

Suppose we had two solutions of the original recurrence relation $a_{n}-2 a_{n-1}=1$. That is, suppose $f(n)$ and $g(n)$ satisfy

$$
f(n)-2 f(n-1)=1 \quad \text { for all } n \geq 1
$$

and

$$
g(n)-2 g(n-1)=1 \quad \text { for all } n \geq 1
$$

Suppose we had two solutions of the original recurrence relation $a_{n}-2 a_{n-1}=1$. That is, suppose $f(n)$ and $g(n)$ satisfy

$$
f(n)-2 f(n-1)=1 \quad \text { for all } n \geq 1
$$

and

$$
g(n)-2 g(n-1)=1 \quad \text { for all } n \geq 1
$$

If we subtract these equations we get

$$
(f(n)-g(n))-2(f(n-1)-g(n-1))=0 \quad \text { holds for all } n \geq 1
$$

Suppose we had two solutions of the original recurrence relation $a_{n}-2 a_{n-1}=1$. That is, suppose $f(n)$ and $g(n)$ satisfy

$$
f(n)-2 f(n-1)=1 \quad \text { for all } n \geq 1
$$

and

$$
g(n)-2 g(n-1)=1 \quad \text { for all } n \geq 1
$$

If we subtract these equations we get

$$
(f(n)-g(n))-2(f(n-1)-g(n-1))=0 \quad \text { holds for all } n \geq 1
$$

This says that $f(n)-g(n)$ satisfies the the associated homogeneous recurrence relation. Therefore, $f(n)-g(n)=C_{1} 2^{n}$ or $f(n)=C_{1} 2^{n}+g(n)$.

Suppose we had two solutions of the original recurrence relation $a_{n}-2 a_{n-1}=1$. That is, suppose $f(n)$ and $g(n)$ satisfy

$$
f(n)-2 f(n-1)=1 \quad \text { for all } n \geq 1
$$

and

$$
g(n)-2 g(n-1)=1 \quad \text { for all } n \geq 1
$$

If we subtract these equations we get

$$
(f(n)-g(n))-2(f(n-1)-g(n-1))=0 \quad \text { holds for all } n \geq 1
$$

This says that $f(n)-g(n)$ satisfies the the associated homogeneous recurrence relation. Therefore, $f(n)-g(n)=C_{1} 2^{n}$ or $f(n)=C_{1} 2^{n}+g(n)$.
This exemplifies a general rule: to find the general solution of a nonhomogeneous recurrence relation, just find one solution and add it to the general solution of the associated homogeneous recurrence relation.

To see how we can use this, we examine our recurrence relation:

$$
a_{n}-2 a_{n-1}=1
$$

and remark that since the right side is constant, we need the left side to be constant, so perhaps letting a_{n} be a constant will give us a solution.

To see how we can use this, we examine our recurrence relation:

$$
a_{n}-2 a_{n-1}=1
$$

and remark that since the right side is constant, we need the left side to be constant, so perhaps letting a_{n} be a constant will give us a solution. But what constant will work? One way to find out is to set $a_{n}=A$ where A is some constant yet to be determined.

To see how we can use this, we examine our recurrence relation:

$$
a_{n}-2 a_{n-1}=1
$$

and remark that since the right side is constant, we need the left side to be constant, so perhaps letting a_{n} be a constant will give us a solution. But what constant will work? One way to find out is to set $a_{n}=A$ where A is some constant yet to be determined. Putting this in the recurrence relation, with $a_{n-1}=A$ as well, we get

$$
A-2 A=1
$$

To see how we can use this, we examine our recurrence relation:

$$
a_{n}-2 a_{n-1}=1
$$

and remark that since the right side is constant, we need the left side to be constant, so perhaps letting a_{n} be a constant will give us a solution. But what constant will work? One way to find out is to set $a_{n}=A$ where A is some constant yet to be determined. Putting this in the recurrence relation, with $a_{n-1}=A$ as well, we get

$$
A-2 A=1
$$

This just says $-A=1$ and we can solve this to get $A=-1$. This says that $a_{n}=-1$ is one solution.

To see how we can use this, we examine our recurrence relation:

$$
a_{n}-2 a_{n-1}=1
$$

and remark that since the right side is constant, we need the left side to be constant, so perhaps letting a_{n} be a constant will give us a solution. But what constant will work? One way to find out is to set $a_{n}=A$ where A is some constant yet to be determined. Putting this in the recurrence relation, with $a_{n-1}=A$ as well, we get

$$
A-2 A=1
$$

This just says $-A=1$ and we can solve this to get $A=-1$. This says that $a_{n}=-1$ is one solution.
Following our previous discussion, we know that all other solutions have the form $a_{n}=C_{1} 2^{n}-1$. Now that we have the general solution, we can impose the initial condition to find C_{1} :

$$
C_{1} 2^{0}-1=0 \quad \text { or } \quad C_{1}=1
$$

Thus we obtain the solution $a_{n}=2^{n}-1$.

Thus we obtain the solution $a_{n}=2^{n}-1$.
A significant step in the solution was to seemingly guess what the form of a solution might be. That is, we guessed that the solution should look something like the right hand side of the recurrence relation.

Thus we obtain the solution $a_{n}=2^{n}-1$.
A significant step in the solution was to seemingly guess what the form of a solution might be. That is, we guessed that the solution should look something like the right hand side of the recurrence relation. This actually works surprisingly often. As an example, lets work through the following. For the moment, lets not even mention initial conditions.

$$
a_{n}-4 a_{n-1}+3 a_{n-2}=(3) 2^{n}, \quad n \geq 2
$$

Thus we obtain the solution $a_{n}=2^{n}-1$.
A significant step in the solution was to seemingly guess what the form of a solution might be. That is, we guessed that the solution should look something like the right hand side of the recurrence relation. This actually works surprisingly often. As an example, lets work through the following. For the moment, lets not even mention initial conditions.

$$
a_{n}-4 a_{n-1}+3 a_{n-2}=(3) 2^{n}, \quad n \geq 2
$$

Step 1: Find the general solution of the homogeneous version:

$$
a_{n}-4 a_{n-1}+3 a_{n-2}=0, \quad n \geq 2
$$

Thus we obtain the solution $a_{n}=2^{n}-1$.
A significant step in the solution was to seemingly guess what the form of a solution might be. That is, we guessed that the solution should look something like the right hand side of the recurrence relation.
This actually works surprisingly often. As an example, lets work through the following. For the moment, lets not even mention initial conditions.

$$
a_{n}-4 a_{n-1}+3 a_{n-2}=(3) 2^{n}, \quad n \geq 2
$$

Step 1: Find the general solution of the homogeneous version:

$$
a_{n}-4 a_{n-1}+3 a_{n-2}=0, \quad n \geq 2
$$

To keep straight which expressions solve which equations, we'll call this the homogeneous solution and denote it by $a_{n}^{(h)}$.

The characteristic equation $r^{2}-4 r+3=0$ has roots 3 and 1 so

$$
a_{n}^{(h)}=C_{1} 3^{n}+C_{2} .
$$

The characteristic equation $r^{2}-4 r+3=0$ has roots 3 and 1 so

$$
a_{n}^{(h)}=C_{1} 3^{n}+C_{2} .
$$

Step 2: Find any one solution of the original recurrence relation. This is referred to as a particular solution and so we denote it by $a_{n}^{(p)}$.

The characteristic equation $r^{2}-4 r+3=0$ has roots 3 and 1 so

$$
a_{n}^{(h)}=C_{1} 3^{n}+C_{2} .
$$

Step 2: Find any one solution of the original recurrence relation. This is referred to as a particular solution and so we denote it by $a_{n}^{(p)}$.
We examine the right side of our recurrence relation, (3) 2^{n}, and reason as follows: if we substitute a constant times 2^{n} for a_{n} then the left side will produce three terms with 2^{n} in each, so this will have a chance of adding up to (3) 2^{n}.

The characteristic equation $r^{2}-4 r+3=0$ has roots 3 and 1 so

$$
a_{n}^{(h)}=C_{1} 3^{n}+C_{2} .
$$

Step 2: Find any one solution of the original recurrence relation. This is referred to as a particular solution and so we denote it by $a_{n}^{(p)}$.
We examine the right side of our recurrence relation, (3) 2^{n}, and reason as follows: if we substitute a constant times 2^{n} for a_{n} then the left side will produce three terms with 2^{n} in each, so this will have a chance of adding up to (3) 2^{n}.
Thus, we should set $a_{n}=A 2^{n}$ and run this through the equation to see what A should be.

If $a_{n}=A 2^{n}$ then $a_{n-1}=A 2^{n-1}$ and $a_{n-2}=A 2^{n-2}$. Putting these in $a_{n}-4 a_{n-1}+3 a_{n-2}=(3) 2^{n}$ gives

$$
\begin{aligned}
A 2^{n}-4 A 2^{n-1}+3 A 2^{n-2} & =(3) 2^{n} \\
{\left[A-4 A 2^{-1}+3 A 2^{-2}\right] 2^{n} } & =(3) 2^{n} \\
A-2 A+(3 / 4) A & =3 \\
-(1 / 4) A & =3 \\
A & =-12
\end{aligned}
$$

If $a_{n}=A 2^{n}$ then $a_{n-1}=A 2^{n-1}$ and $a_{n-2}=A 2^{n-2}$. Putting these in $a_{n}-4 a_{n-1}+3 a_{n-2}=(3) 2^{n}$ gives

$$
\begin{aligned}
A 2^{n}-4 A 2^{n-1}+3 A 2^{n-2} & =(3) 2^{n} \\
{\left[A-4 A 2^{-1}+3 A 2^{-2}\right] 2^{n} } & =(3) 2^{n} \\
A-2 A+(3 / 4) A & =3 \\
-(1 / 4) A & =3 \\
A & =-12
\end{aligned}
$$

So we conclude $a_{n}^{(p)}=(-12) 2^{n}$.

If $a_{n}=A 2^{n}$ then $a_{n-1}=A 2^{n-1}$ and $a_{n-2}=A 2^{n-2}$. Putting these in $a_{n}-4 a_{n-1}+3 a_{n-2}=(3) 2^{n}$ gives

$$
\begin{aligned}
A 2^{n}-4 A 2^{n-1}+3 A 2^{n-2} & =(3) 2^{n} \\
{\left[A-4 A 2^{-1}+3 A 2^{-2}\right] 2^{n} } & =(3) 2^{n} \\
A-2 A+(3 / 4) A & =3 \\
-(1 / 4) A & =3 \\
A & =-12
\end{aligned}
$$

So we conclude $a_{n}^{(p)}=(-12) 2^{n}$.
Step 3: Add the 2 parts together to get the general solution. The general solution is $a_{n}=a_{n}^{(h)}+a_{n}^{(p)}=C_{1} 3^{n}+C_{2}-(12) 2^{n}$.

When initial conditions are present there is a final step.
Step 4: Use the initial conditions to find, and then fill in, the constants. Lets illustrate this for the current problem. Here are some simple initial conditions

$$
\begin{aligned}
& a_{n}-4 a_{n-1}+3 a_{n-2}=(3) 2^{n}, \quad n \geq 2 \\
& \quad a_{0}=0, a_{1}=0
\end{aligned}
$$

When initial conditions are present there is a final step.
Step 4: Use the initial conditions to find, and then fill in, the constants.
Lets illustrate this for the current problem. Here are some simple initial conditions

$$
\begin{aligned}
& a_{n}-4 a_{n-1}+3 a_{n-2}=(3) 2^{n}, \quad n \geq 2 \\
& \quad a_{0}=0, a_{1}=0
\end{aligned}
$$

We obtain C_{1} and C_{2} by putting $n=0$ and 1 into our general solution $a_{n}=C_{1} 3^{n}+C_{2}-(12) 2^{n}$:

$$
\begin{aligned}
C_{1}+C_{2}-12 & =0 \\
3 C_{1}+C_{2}-24 & =0
\end{aligned}
$$

When initial conditions are present there is a final step.
Step 4: Use the initial conditions to find, and then fill in, the constants.
Lets illustrate this for the current problem. Here are some simple initial conditions

$$
\begin{aligned}
& a_{n}-4 a_{n-1}+3 a_{n-2}=(3) 2^{n}, \quad n \geq 2 \\
& \quad a_{0}=0, a_{1}=0
\end{aligned}
$$

We obtain C_{1} and C_{2} by putting $n=0$ and 1 into our general solution $a_{n}=C_{1} 3^{n}+C_{2}-(12) 2^{n}$:

$$
\begin{aligned}
C_{1}+C_{2}-12 & =0 \\
3 C_{1}+C_{2}-24 & =0
\end{aligned}
$$

This has solutions $C_{1}=6$ and $C_{2}=6$.

When initial conditions are present there is a final step.
Step 4: Use the initial conditions to find, and then fill in, the constants.
Lets illustrate this for the current problem. Here are some simple initial conditions

$$
\begin{aligned}
& a_{n}-4 a_{n-1}+3 a_{n-2}=(3) 2^{n}, \quad n \geq 2 \\
& \quad a_{0}=0, a_{1}=0 .
\end{aligned}
$$

We obtain C_{1} and C_{2} by putting $n=0$ and 1 into our general solution $a_{n}=C_{1} 3^{n}+C_{2}-(12) 2^{n}$:

$$
\begin{aligned}
C_{1}+C_{2}-12 & =0 \\
3 C_{1}+C_{2}-24 & =0
\end{aligned}
$$

This has solutions $C_{1}=6$ and $C_{2}=6$.
Therefore, the completed solution is $a_{n}=(6) 3^{n}+6-(12) 2^{n}$.

