Recurrence Relations

Daniel H. Luecking

October 2, 2023

The recurrence relation was

$$a_n - a_{n-1} - a_{n-2} = 0, \quad n \ge 2$$

 $a_0 = 1, \ a_1 = 2$

The recurrence relation was

$$a_n - a_{n-1} - a_{n-2} = 0, \quad n \ge 2$$

 $a_0 = 1, \ a_1 = 2$

The characteristic equation is $r^2 - r - 1 = 0$ which has roots

$$r = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-1)}}{2(1)} = \frac{1 \pm \sqrt{5}}{2}$$

The recurrence relation was

$$a_n - a_{n-1} - a_{n-2} = 0, \quad n \ge 2$$

 $a_0 = 1, \ a_1 = 2$

The characteristic equation is $r^2 - r - 1 = 0$ which has roots

$$r = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-1)}}{2(1)} = \frac{1 \pm \sqrt{5}}{2}$$

The general solution is

$$a_n = C_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + C_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$$

The recurrence relation was

$$a_n - a_{n-1} - a_{n-2} = 0, \quad n \ge 2$$

 $a_0 = 1, \ a_1 = 2$

The characteristic equation is $r^2 - r - 1 = 0$ which has roots

$$r = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-1)}}{2(1)} = \frac{1 \pm \sqrt{5}}{2}$$

The general solution is

$$a_n = C_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + C_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$$

The initial conditions give

$$C_1 + C_2 = 1$$

$$\left(\frac{1+\sqrt{5}}{2}\right)C_1 + \left(\frac{1-\sqrt{5}}{2}\right)C_2 = 2$$

Here, the hard part is solving for the C's The first equation, $C_1+C_2=1$ is not complicated. The second equation can be rewritten as

$$(C_1 + C_2)\left(\frac{1}{2}\right) + (C_1 - C_2)\left(\frac{\sqrt{5}}{2}\right) = 2$$

Here, the hard part is solving for the C's The first equation, $C_1+C_2=1$ is not complicated. The second equation can be rewritten as

$$(C_1 + C_2)\left(\frac{1}{2}\right) + (C_1 - C_2)\left(\frac{\sqrt{5}}{2}\right) = 2$$

Since $(C_1 + C_2)/2 = 1/2$ we get

$$(C_1 - C_2) \left(\frac{\sqrt{5}}{2}\right) = 3/2$$

Here, the hard part is solving for the C's The first equation, $C_1+C_2=1$ is not complicated. The second equation can be rewritten as

$$(C_1 + C_2)\left(\frac{1}{2}\right) + (C_1 - C_2)\left(\frac{\sqrt{5}}{2}\right) = 2$$

Since $(C_1 + C_2)/2 = 1/2$ we get

$$(C_1 - C_2) \left(\frac{\sqrt{5}}{2}\right) = 3/2$$

This we can multiply by $2/\sqrt{5}$ to get

$$C_1 - C_2 = \frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}{5}$$

So our system of equations is now

$$C_1 + C_2 = 1$$
$$C_1 - C_2 = \frac{3\sqrt{5}}{5}$$

So our system of equations is now

$$C_1 + C_2 = 1$$
$$C_1 - C_2 = \frac{3\sqrt{5}}{5}$$

We get C_1 by adding these and dividing by 2:

$$C_1 = \frac{1}{2} + \frac{3\sqrt{5}}{10}$$

So our system of equations is now

$$C_1 + C_2 = 1$$
$$C_1 - C_2 = \frac{3\sqrt{5}}{5}$$

We get C_1 by adding these and dividing by 2:

$$C_1 = \frac{1}{2} + \frac{3\sqrt{5}}{10}$$

and C_2 we get by subtracting and dividing by 2:

$$C_2 = \frac{1}{2} - \frac{3\sqrt{5}}{10}$$

$$a_n - 7a_{n-2} - 6a_{n-3} = 0, \quad n \ge 3$$

 $a_0 = 0, \ a_1 = 1, \ a_2 = 1$

$$a_n - 7a_{n-2} - 6a_{n-3} = 0, \quad n \ge 3$$

 $a_0 = 0, \ a_1 = 1, \ a_2 = 1$

 $r^3 + 0r^2 - 7r - 6 = 0$ has roots r = -1, -2, 3

$$a_n - 7a_{n-2} - 6a_{n-3} = 0, \quad n \ge 3$$

 $a_0 = 0, \ a_1 = 1, \ a_2 = 1$

 $r^3+0r^2-7r-6=0$ has roots r=-1,-2,3 and general solution $a_n=C_1(-1)^n+C_2(-2)^n+C_33^n.$

$$a_n - 7a_{n-2} - 6a_{n-3} = 0, \quad n \ge 3$$

 $a_0 = 0, \ a_1 = 1, \ a_2 = 1$

 $r^3+0r^2-7r-6=0$ has roots r=-1,-2,3 and general solution $a_n=C_1(-1)^n+C_2(-2)^n+C_33^n.$

Finding the C's:

$$C_1 + C_2 + C_3 = 0$$

 $-C_1 - 2C_2 + 3C_3 = 1$
 $C_1 + 4C_2 + 9C_3 = 1$

$$a_n - 7a_{n-2} - 6a_{n-3} = 0, \quad n \ge 3$$

 $a_0 = 0, \ a_1 = 1, \ a_2 = 1$

 $r^3 + 0r^2 - 7r - 6 = 0$ has roots r = -1, -2, 3 and general solution $a_n = C_1(-1)^n + C_2(-2)^n + C_33^n$.

Finding the C's:

$$C_1 + C_2 + C_3 = 0$$

 $-C_1 - 2C_2 + 3C_3 = 1$
 $C_1 + 4C_2 + 9C_3 = 1$

Solving gives
$$C_1=0,\ C_2=-1/5,\ C_3=1/5$$
 so $a_n=(-1/5)(-2)^n+(1/5)3^n$

$$a_n - 6a_{n-1} + 9a_{n-2} = 0, \quad n \ge 2$$

 $a_0 = 1, \ a_1 = 4$

$$a_n - 6a_{n-1} + 9a_{n-2} = 0, \quad n \ge 2$$

 $a_0 = 1, \ a_1 = 4$

We get $r^2-6r+9=0$. Factoring gives us (r-3)(r-3)=0 and so there is only one root, r=3.

$$a_n - 6a_{n-1} + 9a_{n-2} = 0, \quad n \ge 2$$

 $a_0 = 1, \ a_1 = 4$

We get $r^2 - 6r + 9 = 0$. Factoring gives us (r - 3)(r - 3) = 0 and so there is only one root, r = 3. (Because both factors lead to the same value, this is referred to as a double root or a repeated root.)

$$a_n - 6a_{n-1} + 9a_{n-2} = 0, \quad n \ge 2$$

 $a_0 = 1, \ a_1 = 4$

We get $r^2 - 6r + 9 = 0$. Factoring gives us (r - 3)(r - 3) = 0 and so there is only one root, r = 3. (Because both factors lead to the same value, this is referred to as a double root or a repeated root.)

The theory requires **two** basic solutions and we have only the one: $a_n = 3^n$.

$$a_n - 6a_{n-1} + 9a_{n-2} = 0, \quad n \ge 2$$

 $a_0 = 1, \ a_1 = 4$

We get $r^2 - 6r + 9 = 0$. Factoring gives us (r - 3)(r - 3) = 0 and so there is only one root, r = 3. (Because both factors lead to the same value, this is referred to as a double root or a repeated root.)

The theory requires **two** basic solutions and we have only the one: $a_n=3^n$. To see that this is insufficient, suppose we tried $a_n=C_13^n$. Then the initial conditions give us

$$a_0 = 1 = C_1$$
 and $a_1 = 4 = 3C_1$.

$$a_n - 6a_{n-1} + 9a_{n-2} = 0, \quad n \ge 2$$

 $a_0 = 1, \ a_1 = 4$

We get $r^2 - 6r + 9 = 0$. Factoring gives us (r-3)(r-3) = 0 and so there is only one root, r=3. (Because both factors lead to the same value, this is referred to as a double root or a repeated root.)

The theory requires **two** basic solutions and we have only the one: $a_n=3^n$. To see that this is insufficient, suppose we tried $a_n=C_13^n$. Then the initial conditions give us

$$a_0 = 1 = C_1$$
 and $a_1 = 4 = 3C_1$.

But C_1 cannot be both 1 and 4/3.

$$a_0 = C_1 + C_2 = 1$$
 and $a_1 = 3C_1 + 3C_2 = 4$.

$$a_0 = C_1 + C_2 = 1$$
 and $a_1 = 3C_1 + 3C_2 = 4$.

The first says $C_1 + C_2 = 1$ and the second says $C_1 + C_2 = 4/3$, which cannot both be true.

$$a_0 = C_1 + C_2 = 1$$
 and $a_1 = 3C_1 + 3C_2 = 4$.

The first says $C_1 + C_2 = 1$ and the second says $C_1 + C_2 = 4/3$, which cannot both be true.

It turns out (there are ways to prove that this always works) that when the characteristic equation has a double root, then multiplying the solution that comes from it by n gives another solution.

$$a_0 = C_1 + C_2 = 1$$
 and $a_1 = 3C_1 + 3C_2 = 4$.

The first says $C_1 + C_2 = 1$ and the second says $C_1 + C_2 = 4/3$, which cannot both be true.

It turns out (there are ways to prove that this always works) that when the characteristic equation has a double root, then multiplying the solution that comes from it by n gives another solution. That is, for this problem the general solution is

$$a_n = C_1 3^n + C_2 n 3^n$$

[For order 3 recurrence relation it is possible to have triple roots (and still higher repetitions for higher orders). In that case, multiply by n again to get basic solutions r^n , nr^n and n^2r^n (if r is a triple root).]

$$C_1 + 0C_2 = 1$$
, for $n = 0$
 $3C_1 + 3C_2 = 4$, for $n = 1$

$$C_1 + 0C_2 = 1$$
, for $n = 0$
 $3C_1 + 3C_2 = 4$, for $n = 1$

and solving this produces $C_1 = 1$, $C_2 = 1/3$. So, $a_n = 3^n + (1/3)n 3^n$.

$$C_1 + 0C_2 = 1$$
, for $n = 0$
 $3C_1 + 3C_2 = 4$, for $n = 1$

and solving this produces $C_1=1$, $C_2=1/3$. So, $a_n=3^n+(1/3)n\,3^n$. Here is another example:

$$a_n - 2a_{n-1} + a_{n-2} = 0, \quad n \ge 2$$

 $a_0 = 2, \ a_1 = 5$

$$C_1 + 0C_2 = 1$$
, for $n = 0$
 $3C_1 + 3C_2 = 4$, for $n = 1$

and solving this produces $C_1=1,\ C_2=1/3.$ So, $a_n=3^n+(1/3)n\,3^n.$ Here is another example:

$$a_n - 2a_{n-1} + a_{n-2} = 0, \quad n \ge 2$$

 $a_0 = 2, \ a_1 = 5$

Then $r^2 - 2r + 1$ gives $(r - 1)^2 = 0$ so there is a double root r = 1.

$$C_1 + 0C_2 = 1$$
, for $n = 0$
 $3C_1 + 3C_2 = 4$, for $n = 1$

and solving this produces $C_1=1,\ C_2=1/3.$ So, $a_n=3^n+(1/3)n\,3^n.$ Here is another example:

$$a_n - 2a_{n-1} + a_{n-2} = 0, \quad n \ge 2$$

 $a_0 = 2, \ a_1 = 5$

Then r^2-2r+1 gives $(r-1)^2=0$ so there is a double root r=1. This gives the general solution

$$a_n = C_1 1^n + C_2 n 1^n = C_1 + C_2 n$$

$$C_1 = 2$$

$$C_1 + C_2 = 5$$

$$C_1 = 2$$

$$C_1 + C_2 = 5$$

so $C_1=2$ and $C_2=3$ giving $a_n=2+3n$.

$$C_1 = 2$$
$$C_1 + C_2 = 5$$

so $C_1 = 2$ and $C_2 = 3$ giving $a_n = 2 + 3n$.

Things can get worse: there can be no roots (or at least no real roots).

$$C_1 = 2$$
$$C_1 + C_2 = 5$$

so $C_1=2$ and $C_2=3$ giving $a_n=2+3n$.

Things can get worse: there can be no roots (or at least no *real* roots). For example

$$a_n - 6a_{n-1} + 10a_{n-2} = 0, \quad n \ge 2$$

 $a_0 = 1, \ a_1 = 5$

The equations for the C's are

$$C_1 = 2$$

$$C_1 + C_2 = 5$$

so $C_1 = 2$ and $C_2 = 3$ giving $a_n = 2 + 3n$.

Things can get worse: there can be no roots (or at least no *real* roots). For example

$$a_n - 6a_{n-1} + 10a_{n-2} = 0, \quad n \ge 2$$

 $a_0 = 1, \ a_1 = 5$

From $r^2 - 6r + 10 = 0$ the quadratic formula gives

$$r = \frac{6 \pm \sqrt{6^2 - 4(10)}}{2} = \frac{6 \pm \sqrt{-4}}{2}$$
$$= \frac{6 \pm \sqrt{4(-1)}}{2} = \frac{6 \pm 2\sqrt{-1}}{2}$$
$$= 3 \pm i$$

There is no real number whose square is negative, so $i=\sqrt{-1}$ is called the $imaginary\ unit$.

So we can just use these roots as we would any real roots and get the general solution

$$a_n = C_1(3+i)^n + C_2(3-i)^n$$

So we can just use these roots as we would any real roots and get the general solution

$$a_n = C_1(3+i)^n + C_2(3-i)^n$$

 $\sqrt{-1}$ is no different than other square roots in computations.

So we can just use these roots as we would any real roots and get the general solution

$$a_n = C_1(3+i)^n + C_2(3-i)^n$$

 $\sqrt{-1}$ is no different than other square roots in computations. To see this, lets find the values of C_1 and C_2 from the initial conditions $a_0=1$ and $a_1=5$:

$$C_1 + C_2 = 1$$
$$(3+i)C_1 + (3-i)C_2 = 5$$

So we can just use these roots as we would any real roots and get the general solution

$$a_n = C_1(3+i)^n + C_2(3-i)^n$$

 $\sqrt{-1}$ is no different than other square roots in computations. To see this, lets find the values of C_1 and C_2 from the initial conditions $a_0=1$ and $a_1=5$:

$$C_1 + C_2 = 1$$
$$(3+i)C_1 + (3-i)C_2 = 5$$

The second equation can be rearranged into

$$3(C_1 + C_2) + (C_1 - C_2)i = 5$$

So we can just use these roots as we would any real roots and get the general solution

$$a_n = C_1(3+i)^n + C_2(3-i)^n$$

 $\sqrt{-1}$ is no different than other square roots in computations. To see this, lets find the values of C_1 and C_2 from the initial conditions $a_0=1$ and $a_1=5$:

$$C_1 + C_2 = 1$$
$$(3+i)C_1 + (3-i)C_2 = 5$$

The second equation can be rearranged into

$$3(C_1 + C_2) + (C_1 - C_2)i = 5$$

Since $3(C_1 + C_2) = 3$, this gives us

$$(C_1 - C_2)i = 2$$
 or $C_1 - C_2 = 2/i$

So the system of equations becomes

$$C_1 + C_2 = 1$$
$$C_1 - C_2 = 2/i$$

which has solution
$$C_1 = (1 + 2/i)/2$$
, $C_2 = (1 - 2/i)/2$,

So the system of equations becomes

$$C_1 + C_2 = 1$$
$$C_1 - C_2 = 2/i$$

which has solution $C_1=(1+2/i)/2$, $C_2=(1-2/i)/2$, and our final solution is

$$a_n = \frac{1+2/i}{2}(3+i)^n + \frac{1-2/i}{2}(3-i)^n$$

So the system of equations becomes

$$C_1 + C_2 = 1$$

 $C_1 - C_2 = 2/i$

which has solution $C_1=(1+2/i)/2$, $C_2=(1-2/i)/2$, and our final solution is

$$a_n = \frac{1+2/i}{2}(3+i)^n + \frac{1-2/i}{2}(3-i)^n$$

Since (-i)(i) = 1 we have 1/i = -i and so the above solution can be rewritten in the more standard form

$$a_n = (1/2 - i)(3 + i)^n + (1/2 + i)(3 - i)^n$$