
Recurrence Relations

Daniel H. Luecking

September 29, 2023

1 / 14



Combinatorics problems that lead to recurrence relations

The chip stacking problem

You have a lot of poker chips (colored disks) all either blue or white. How
many ways can you stack n of then so that no white chip is directly
touching another white chip?

An equivalent problem is: how many different bitstrings (strings consisting
only of 0’s and 1’s) of length n contain no consecutive 1’s?
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Let an be the number of ways to stack n chips with no consecutive white
chips.

We consider what the top chip might be. It might be white or blue.

If it is blue then below it are any of the an−1 possible ways to stack n− 1
chips.

If the top one is a white chip, the one below it must be blue and below
that can be any of the an−2 possible ways to stack n− 2 chips.

That is

an = an−1 + an−2, n ≥ 2

a0 = 1, a1 = 2.

So the sequence an looks like 1, 2, 3, 5, 8, 13, . . . .
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Our next section will give us the tools to find the formula
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Linear recurrence relations

The following is a perfectly valid recurrence relation:

an = an−1 · an−2.

and there are ways to solve problems involving it.

However we will focus,
for the moment, only on recurrence relations like the following

an = 3an−1

an = 2an−1 − 5n2an−2

an = 4an−1 + 2an−2 + 5an−3

These are called linear recurrence relations. The definition of linear is that
they can be written in the following form (this is for second order):

an + b(n)an−1 + c(n)an−2 = h(n)

where b, c and h are explicit functions of n that make no reference to any
terms of the unknown sequence ak. If the function h(n) on the right side
is just 0, the recurrence relation is called homogeneous.
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There is a theory of linear recurrence relations that helps us build solutions
out of simpler parts.

For this discussion we will refer to an = f(n) as a
solution if it just satisfies the recurrence equation, ignoring any initial
condition(s).

Theorem

If an = f(n) is a solutions of a homogeneous linear recurrence relation,
then for any constant C so is an = Cf(n). If an = g(n) is also a solution,
then so is an = f(n) + g(n).

For example, consider

an − 5an−1 + 6an−2 = 0

which is homogeneous and linear. Let us check that both an = 3n and
an = 2n are solutions.
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For the first, we simply put

an = 3n, an−1 = 3n−1, an−2 = 3n−2

into the recurrence relation to get

3n − 5 · 3n−1 + 6 · 3n−2 = 0

We can rearrange the left side:

(32 − 5 · 31 + 6)3n−2 = 0 or (9− 5 · 3 + 6)3n−2 = 0

and clearly the last one says 0 · 3n−2 = 0, which is true for every n ≥ 2.
Similar calculations with an = 2n lead to

(22 − 5 · 2 + 6)2n−2 = 0

which is also true for every n ≥ 2.

With these solutions we can build new solutions: an = 2(3n) and
an = −(2n) and an = 2(3n)− (2n). Note that if we add initial conditions
a0 = 1 and a1 = 4, then only the last of these satisfies them both.
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A further part of the theory of recurrence relations is the following

Theorem

For any homogeneous linear recurrence relation of order k there exist a
basic set of solutions an = f1(n), an = f2(n),. . . ,an = fk(n)

such that
every solution has the form

an = C1f1(n) + C2f2(n) + · · ·+ Ckfk(n)

for some constants C1, C2,. . .Ck.

For our example an − 5an−1 + 6an−2 the basic solutions are an = 3n and
an = 2n. Thus, all solutions look like an = C13

n + C22
n. This is called a

general solution: It satisfies the recurrence relation for any choice of C1

and C2, but satisfies any given initial condition for only one choice.
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If the general solution is an = C13
n + C22

n and the initial conditions are
a0 = 1 and a1 = 4 then putting n = 0 and n = 1 into the solution gives us

a0 = 1 = C1 + C2

a1 = 4 = 3C1 + 2C2

Solving this for C1 and C2 gives C1 = 2, C2 = −1.

This gives us the general scheme for solving homogeneous linear
recurrence relations:

• Find the basic set of solutions.

• Build the general solution from them.

• Solve for the constants using the initial conditions.
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Finding the basic solutions: We will do this completely only for second
order equations with constant coefficients.

This means the recurrence
relation looks like an + ban−1 + can−2 = 0, with constants b and c.

For a first order equation: an − ban−1 = 0, the basic solution is an = bn

and the general solution is C1b
n. The constant is determined by the initial

condition.

For higher order equations one might speculate that one or more of the
basic solutions has a similar structure. That is, we might suppose that one
solution is a geometric series an = rn for some r.

10 / 14



Finding the basic solutions: We will do this completely only for second
order equations with constant coefficients. This means the recurrence
relation looks like an + ban−1 + can−2 = 0, with constants b and c.

For a first order equation: an − ban−1 = 0, the basic solution is an = bn

and the general solution is C1b
n. The constant is determined by the initial

condition.

For higher order equations one might speculate that one or more of the
basic solutions has a similar structure. That is, we might suppose that one
solution is a geometric series an = rn for some r.

10 / 14



Finding the basic solutions: We will do this completely only for second
order equations with constant coefficients. This means the recurrence
relation looks like an + ban−1 + can−2 = 0, with constants b and c.

For a first order equation: an − ban−1 = 0, the basic solution is an = bn

and the general solution is C1b
n.

The constant is determined by the initial
condition.

For higher order equations one might speculate that one or more of the
basic solutions has a similar structure. That is, we might suppose that one
solution is a geometric series an = rn for some r.

10 / 14



Finding the basic solutions: We will do this completely only for second
order equations with constant coefficients. This means the recurrence
relation looks like an + ban−1 + can−2 = 0, with constants b and c.

For a first order equation: an − ban−1 = 0, the basic solution is an = bn

and the general solution is C1b
n. The constant is determined by the initial

condition.

For higher order equations one might speculate that one or more of the
basic solutions has a similar structure. That is, we might suppose that one
solution is a geometric series an = rn for some r.

10 / 14



Finding the basic solutions: We will do this completely only for second
order equations with constant coefficients. This means the recurrence
relation looks like an + ban−1 + can−2 = 0, with constants b and c.

For a first order equation: an − ban−1 = 0, the basic solution is an = bn

and the general solution is C1b
n. The constant is determined by the initial

condition.

For higher order equations one might speculate that one or more of the
basic solutions has a similar structure.

That is, we might suppose that one
solution is a geometric series an = rn for some r.

10 / 14



Finding the basic solutions: We will do this completely only for second
order equations with constant coefficients. This means the recurrence
relation looks like an + ban−1 + can−2 = 0, with constants b and c.

For a first order equation: an − ban−1 = 0, the basic solution is an = bn

and the general solution is C1b
n. The constant is determined by the initial

condition.

For higher order equations one might speculate that one or more of the
basic solutions has a similar structure. That is, we might suppose that one
solution is a geometric series an = rn for some r.

10 / 14



That can be checked: put an = rn in the equation (as usual also
an−1 = rn−1 and an−2 = rn−2).

This gives

rn + brn−1 + crn−2 = 0 or (r2 + br + c)rn−2 = 0

Now if r = 0 the solution an = 0 gives us nothing to work with, so we
assume r ̸= 0. Then we can divide the last equation by rn−2 to get the
charactristic equation

r2 + br + c = 0

If an = rn is to be a solution then r must be a root of this equation:

r =
−b±

√
b2 − 4c

2
(1)
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Here’s an example:
an − an−1 − 6an−2 = 0.

The above process gives us the characteristic equation

r2 − r − 6 = 0.

Which has roots r = 3 and r = −2. That means both an = 3n and
an = (−2)n are solutions and the general solution is
an = C13

n + C2(−2)n.

[Note that (−2)n is not −2n. The sequence (−2)n is 1,−2, 4,−8, 16, . . .
while −2n is −1,−2,−4,−8,−16, . . . .]
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Continuing with the same example, let’s give it initial conditions:

an − an−1 − 6an−2 = 0, n ≥ 2

a0 = 0, a1 = 5

From the general solution an = C13
n + C2(−2)n and the initial conditions

we get equations for C1 and C2:

C1 +C2 = 0

3C1−2C2 = 5

which gives C1 = 1 and C2 = −1 so that an = 3n − (−2)n is the solution
to the initial value problem.
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A second example:

an − 4an−2 = 0

a0 = 1, a1 = 1

Here we get r2 − 4 = 0 and roots 2 and −2. The general solution is
an = C12

n + C2(−2)n. From

C1 +C2 = 1

2C1−2C2 = 1

we get C1 = 3/4 and C2 = 1/4 so that an = (3/4)2n + (1/4)(−2)n.
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