Recurrence Relations

Daniel H. Luecking

September 27, 2023

The following is an example of a recurrence relation problem

$$
\begin{aligned}
& a_{n}=a_{n-1}+1, \quad n \geq 1, \\
& a_{0}=0 .
\end{aligned}
$$

The following is an example of a recurrence relation problem

$$
\begin{aligned}
& a_{n}=a_{n-1}+1, \quad n \geq 1, \\
& a_{0}=0 .
\end{aligned}
$$

This should be understood as follows:

The following is an example of a recurrence relation problem

$$
\begin{aligned}
& a_{n}=a_{n-1}+1, \quad n \geq 1, \\
& a_{0}=0 .
\end{aligned}
$$

This should be understood as follows:

1. There is some unknown sequence $a_{0}, a_{1}, a_{2} \ldots, a_{n}, \ldots$.

The following is an example of a recurrence relation problem

$$
\begin{aligned}
& a_{n}=a_{n-1}+1, \quad n \geq 1, \\
& a_{0}=0 .
\end{aligned}
$$

This should be understood as follows:

1. There is some unknown sequence $a_{0}, a_{1}, a_{2} \ldots, a_{n}, \ldots$.
2. ' $a_{0}=0$ ' means that sequence starts with 0 .

The following is an example of a recurrence relation problem

$$
\begin{aligned}
& a_{n}=a_{n-1}+1, \quad n \geq 1, \\
& a_{0}=0 .
\end{aligned}
$$

This should be understood as follows:

1. There is some unknown sequence $a_{0}, a_{1}, a_{2} \ldots, a_{n}, \ldots$.
2. ' $a_{0}=0$ ' means that sequence starts with 0 .
3. ' $a_{n}=a_{n-1}+1, n \geq 1$ ' means that every term in the sequence, starting with $n=1$, is 1 more than the one before it.

The following is an example of a recurrence relation problem

$$
\begin{aligned}
& a_{n}=a_{n-1}+1, \quad n \geq 1, \\
& a_{0}=0 .
\end{aligned}
$$

This should be understood as follows:

1. There is some unknown sequence $a_{0}, a_{1}, a_{2} \ldots, a_{n}, \ldots$.
2. ' $a_{0}=0$ ' means that sequence starts with 0 .
3. ' $a_{n}=a_{n-1}+1, n \geq 1$ ' means that every term in the sequence, starting with $n=1$, is 1 more than the one before it.

Notice that the third item could equally well be expressed by ' $a_{n+1}=a_{n}+1, n \geq 0$.'

The following is an example of a recurrence relation problem

$$
\begin{aligned}
& a_{n}=a_{n-1}+1, \quad n \geq 1, \\
& a_{0}=0 .
\end{aligned}
$$

This should be understood as follows:

1. There is some unknown sequence $a_{0}, a_{1}, a_{2} \ldots, a_{n}, \ldots$.
2. ' $a_{0}=0$ ' means that sequence starts with 0 .
3. ' $a_{n}=a_{n-1}+1, n \geq 1$ ' means that every term in the sequence, starting with $n=1$, is 1 more than the one before it.

Notice that the third item could equally well be expressed by
' $a_{n+1}=a_{n}+1, n \geq 0$.'
The 'problem' is to find a formula for a_{n} as a function of n.

The following is an example of a recurrence relation problem

$$
\begin{aligned}
& a_{n}=a_{n-1}+1, \quad n \geq 1, \\
& a_{0}=0 .
\end{aligned}
$$

This should be understood as follows:

1. There is some unknown sequence $a_{0}, a_{1}, a_{2} \ldots, a_{n}, \ldots$.
2. ' $a_{0}=0$ ' means that sequence starts with 0 .
3. ' $a_{n}=a_{n-1}+1, n \geq 1$ ' means that every term in the sequence, starting with $n=1$, is 1 more than the one before it.

Notice that the third item could equally well be expressed by
' $a_{n+1}=a_{n}+1, n \geq 0$.'
The 'problem' is to find a formula for a_{n} as a function of n.
It should be clear that $a_{1}=a_{0}+1=0+1=1, a_{2}=a_{1}+1=1+1=2$, and so on. We can guess that $a_{n}=n$ for all n.

That guess seems very likely correct but, in general, how do we check that it is?

That guess seems very likely correct but, in general, how do we check that it is? First, any formula should satisfy the initial condition(s)

$$
a_{0}=0
$$

That guess seems very likely correct but, in general, how do we check that it is? First, any formula should satisfy the initial condition(s)

$$
a_{0}=0 .
$$

If $a_{n}=n$ for all n then, substituting $n=0$ gives $a_{0}=0$, so that checks.

That guess seems very likely correct but, in general, how do we check that it is? First, any formula should satisfy the initial condition(s)

$$
a_{0}=0 .
$$

If $a_{n}=n$ for all n then, substituting $n=0$ gives $a_{0}=0$, so that checks. Second, any formula should satisfy the recurrence relation

$$
a_{n}=a_{n-1}+1, \quad n \geq 1
$$

That guess seems very likely correct but, in general, how do we check that it is? First, any formula should satisfy the initial condition(s)

$$
a_{0}=0 .
$$

If $a_{n}=n$ for all n then, substituting $n=0$ gives $a_{0}=0$, so that checks.
Second, any formula should satisfy the recurrence relation

$$
a_{n}=a_{n-1}+1, \quad n \geq 1,
$$

If we substitute $n-1$ for n in the formula

$$
\begin{aligned}
& a_{n}=n, \text { we get } \\
& a_{n-1}=n-1
\end{aligned}
$$

That guess seems very likely correct but, in general, how do we check that it is? First, any formula should satisfy the initial condition(s)

$$
a_{0}=0
$$

If $a_{n}=n$ for all n then, substituting $n=0$ gives $a_{0}=0$, so that checks.
Second, any formula should satisfy the recurrence relation

$$
a_{n}=a_{n-1}+1, \quad n \geq 1,
$$

If we substitute $n-1$ for n in the formula

$$
\begin{aligned}
& a_{n}=n, \text { we get } \\
& a_{n-1}=n-1
\end{aligned}
$$

Putting these 2 into the recurrence relation
$a_{n}=a_{n-1}+1$ gives
$n=n-1+1$, which is true for all n.

Another example:

$$
\begin{aligned}
& a_{n}=2 a_{n-1}+3, \quad n \geq 1 \\
& a_{0}=2 .
\end{aligned}
$$

Another example:

$$
\begin{aligned}
& a_{n}=2 a_{n-1}+3, \quad n \geq 1 \\
& a_{0}=2 .
\end{aligned}
$$

I claim the solution is $a_{n}=5\left(2^{n}\right)-3$.

Another example:

$$
\begin{aligned}
& a_{n}=2 a_{n-1}+3, \quad n \geq 1 \\
& a_{0}=2 .
\end{aligned}
$$

I claim the solution is $a_{n}=5\left(2^{n}\right)-3$. To see this, first check the initial condition:

$$
a_{0}=5\left(2^{0}\right)-3=2 \text {, so that checks. }
$$

Another example:

$$
\begin{aligned}
& a_{n}=2 a_{n-1}+3, \quad n \geq 1 \\
& a_{0}=2 .
\end{aligned}
$$

I claim the solution is $a_{n}=5\left(2^{n}\right)-3$. To see this, first check the initial condition:

$$
a_{0}=5\left(2^{0}\right)-3=2, \text { so that checks. }
$$

Then check the the recurrence relation. Since $a_{n-1}=5\left(2^{n-1}\right)-3$, we have to see if

$$
5\left(2^{n}\right)-3=2\left(5\left(2^{n-1}\right)-3\right)+3
$$

Another example:

$$
\begin{aligned}
& a_{n}=2 a_{n-1}+3, \quad n \geq 1 \\
& a_{0}=2
\end{aligned}
$$

I claim the solution is $a_{n}=5\left(2^{n}\right)-3$. To see this, first check the initial condition:

$$
a_{0}=5\left(2^{0}\right)-3=2 \text {, so that checks. }
$$

Then check the the recurrence relation. Since $a_{n-1}=5\left(2^{n-1}\right)-3$, we have to see if

$$
5\left(2^{n}\right)-3=2\left(5\left(2^{n-1}\right)-3\right)+3
$$

Since the right side simplifies to $5\left(2^{n}\right)-6+3$, they are equal.

Another example:

$$
\begin{aligned}
& a_{n}=2 a_{n-1}+3, \quad n \geq 1 \\
& a_{0}=2
\end{aligned}
$$

I claim the solution is $a_{n}=5\left(2^{n}\right)-3$. To see this, first check the initial condition:

$$
a_{0}=5\left(2^{0}\right)-3=2, \text { so that checks. }
$$

Then check the the recurrence relation. Since $a_{n-1}=5\left(2^{n-1}\right)-3$, we have to see if

$$
5\left(2^{n}\right)-3=2\left(5\left(2^{n-1}\right)-3\right)+3
$$

Since the right side simplifies to $5\left(2^{n}\right)-6+3$, they are equal.
As we learn techniques for solving recurrence relations, keep in mind that a single recurrence relation like $a_{n}=2 a_{n-1}+3$ is, in reality, an infinite sequence of equations.

That infinite sequence of equations is, counting the initial condition,

$$
\begin{aligned}
& a_{0}=2 \\
& a_{1}=2 a_{0}+3 \\
& a_{2}=2 a_{1}+3 \\
& a_{3}=2 a_{2}+3
\end{aligned}
$$

That infinite sequence of equations is, counting the initial condition,

$$
\begin{aligned}
& a_{0}=2 \\
& a_{1}=2 a_{0}+3 \\
& a_{2}=2 a_{1}+3 \\
& a_{3}=2 a_{2}+3
\end{aligned}
$$

It is impossible to find a number for every a_{n}, but it is often possible to find a formula for them all.

That infinite sequence of equations is, counting the initial condition,

$$
\begin{aligned}
a_{0} & =2 \\
a_{1} & =2 a_{0}+3 \\
a_{2} & =2 a_{1}+3 \\
a_{3} & =2 a_{2}+3
\end{aligned}
$$

It is impossible to find a number for every a_{n}, but it is often possible to find a formula for them all.

Every recurrence can be programmed into a loop that will generate some of the values.

That infinite sequence of equations is, counting the initial condition,

$$
\begin{aligned}
& a_{0}=2 \\
& a_{1}=2 a_{0}+3 \\
& a_{2}=2 a_{1}+3 \\
& a_{3}=2 a_{2}+3
\end{aligned}
$$

It is impossible to find a number for every a_{n}, but it is often possible to find a formula for them all.

Every recurrence can be programmed into a loop that will generate some of the values. For example

```
numeric a[];
a[0] = 2;
for n = 1 upto 1000:
    a[n] := 2*a[n-1] + 3;
endfor
```

A better program might take the desired position in the sequence as input (say in the variable M) and replace the second line with for $\mathrm{n}=1$ upto M :

A better program might take the desired position in the sequence as input (say in the variable M) and replace the second line with
for $\mathrm{n}=1$ upto M :
With the formula that we have, we can just do $a_{1000}=5\left(2^{1000}\right)-3$, $a_{2000}=5\left(2^{2000}\right)-3$, and so on for any position.

A better program might take the desired position in the sequence as input (say in the variable M) and replace the second line with

for $\mathrm{n}=1$ upto M :

With the formula that we have, we can just do $a_{1000}=5\left(2^{1000}\right)-3$, $a_{2000}=5\left(2^{2000}\right)-3$, and so on for any position.
Here is another example:

$$
\begin{aligned}
& a_{n}=n a_{n-1}, \quad n \geq 1 \\
& a_{0}=2
\end{aligned}
$$

A better program might take the desired position in the sequence as input (say in the variable M) and replace the second line with

for $\mathrm{n}=1$ upto M :

With the formula that we have, we can just do $a_{1000}=5\left(2^{1000}\right)-3$, $a_{2000}=5\left(2^{2000}\right)-3$, and so on for any position.
Here is another example:

$$
\begin{aligned}
a_{n} & =n a_{n-1}, \quad n \geq 1 \\
a_{0} & =2 .
\end{aligned}
$$

It is easy to get $a_{1}=2, a_{2}=4, a_{3}=12, a_{4}=48$ and so on.

A better program might take the desired position in the sequence as input (say in the variable M) and replace the second line with

$$
\text { for } n=1 \text { upto } M:
$$

With the formula that we have, we can just do $a_{1000}=5\left(2^{1000}\right)-3$, $a_{2000}=5\left(2^{2000}\right)-3$, and so on for any position.
Here is another example:

$$
\begin{aligned}
a_{n} & =n a_{n-1}, \quad n \geq 1 \\
a_{0} & =2 .
\end{aligned}
$$

It is easy to get $a_{1}=2, a_{2}=4, a_{3}=12, a_{4}=48$ and so on.
The formula is actually $a_{n}=2 \cdot n!$. Because putting this and $a_{n-1}=2(n-1)$! into the recurrence relation gives:

$$
2(n!)=n(2(n-1)!)
$$

A better program might take the desired position in the sequence as input (say in the variable M) and replace the second line with

$$
\text { for } \mathrm{n}=1 \text { upto } \mathrm{M} \text { : }
$$

With the formula that we have, we can just do $a_{1000}=5\left(2^{1000}\right)-3$, $a_{2000}=5\left(2^{2000}\right)-3$, and so on for any position.
Here is another example:

$$
\begin{aligned}
& a_{n}=n a_{n-1}, \quad n \geq 1 \\
& a_{0}=2 .
\end{aligned}
$$

It is easy to get $a_{1}=2, a_{2}=4, a_{3}=12, a_{4}=48$ and so on.
The formula is actually $a_{n}=2 \cdot n!$. Because putting this and $a_{n-1}=2(n-1)$! into the recurrence relation gives:

$$
2(n!)=n(2(n-1)!)
$$

which is correct for every $n \geq 1$

A better program might take the desired position in the sequence as input (say in the variable M) and replace the second line with

$$
\text { for } n=1 \text { upto } M:
$$

With the formula that we have, we can just do $a_{1000}=5\left(2^{1000}\right)-3$, $a_{2000}=5\left(2^{2000}\right)-3$, and so on for any position.
Here is another example:

$$
\begin{aligned}
& a_{n}=n a_{n-1}, \quad n \geq 1 \\
& a_{0}=2 .
\end{aligned}
$$

It is easy to get $a_{1}=2, a_{2}=4, a_{3}=12, a_{4}=48$ and so on.
The formula is actually $a_{n}=2 \cdot n!$. Because putting this and $a_{n-1}=2(n-1)$! into the recurrence relation gives:

$$
2(n!)=n(2(n-1)!)
$$

which is correct for every $n \geq 1$ and the initial condition

$$
a_{0}=2 \cdot 0!=2
$$

is correct.

The order of a recurrence relation is the largest difference between the subscipts on the variables a_{n}.

The order of a recurrence relation is the largest difference between the subscipts on the variables a_{n}. The three examples so far have all had order 1.

The order of a recurrence relation is the largest difference between the subscipts on the variables a_{n}. The three examples so far have all had order 1. Some higher order examples:

$$
\begin{aligned}
a_{n} & =a_{n-1}+a_{n-2}, \quad n \geq 2 & & \text { order } 2 \\
a_{n+4} & =a_{n+3} a_{n+2}+2 a_{n}, \quad n \geq 0 & & \text { order } 4 \\
a_{n} & =\sum_{j=0}^{n-1} a_{j}, \quad n \geq 1 & & \text { order } \infty
\end{aligned}
$$

The order of a recurrence relation is the largest difference between the subscipts on the variables a_{n}. The three examples so far have all had order 1. Some higher order examples:

$$
\begin{aligned}
a_{n} & =a_{n-1}+a_{n-2}, \quad n \geq 2 & & \text { order } 2 \\
a_{n+4} & =a_{n+3} a_{n+2}+2 a_{n}, \quad n \geq 0 & & \text { order } 4 \\
a_{n} & =\sum_{j=0}^{n-1} a_{j}, \quad n \geq 1 & & \text { order } \infty
\end{aligned}
$$

Many infinite order recurrence relations can be modified to become a finite order relation for a related sequence.

The order of a recurrence relation is the largest difference between the subscipts on the variables a_{n}. The three examples so far have all had order 1. Some higher order examples:

$$
\begin{aligned}
a_{n} & =a_{n-1}+a_{n-2}, \quad n \geq 2 & & \text { order } 2 \\
a_{n+4} & =a_{n+3} a_{n+2}+2 a_{n}, \quad n \geq 0 & & \text { order } 4 \\
a_{n} & =\sum_{j=0}^{n-1} a_{j}, \quad n \geq 1 & & \text { order } \infty
\end{aligned}
$$

Many infinite order recurrence relations can be modified to become a finite order relation for a related sequence. For example, if we let

$$
s_{n}=\sum_{j=0}^{n} a_{j} \text { so that } a_{n}=s_{n}-s_{n-1}
$$

The order of a recurrence relation is the largest difference between the subscipts on the variables a_{n}. The three examples so far have all had order 1. Some higher order examples:

$$
\begin{aligned}
a_{n} & =a_{n-1}+a_{n-2}, \quad n \geq 2 & & \text { order } 2 \\
a_{n+4} & =a_{n+3} a_{n+2}+2 a_{n}, \quad n \geq 0 & & \text { order } 4 \\
a_{n} & =\sum_{j=0}^{n-1} a_{j}, \quad n \geq 1 & & \text { order } \infty
\end{aligned}
$$

Many infinite order recurrence relations can be modified to become a finite order relation for a related sequence. For example, if we let

$$
s_{n}=\sum_{j=0}^{n} a_{j} \text { so that } a_{n}=s_{n}-s_{n-1}
$$

then the last relation above can be written $s_{n}-s_{n-1}=s_{n-1}$, which has order 1.

Some special first-order recurrence relations

The recurrence relation

$$
\begin{aligned}
& a_{n}=a_{n-1}+5, \quad n \geq 1 \\
& a_{0}=3
\end{aligned}
$$

has solution $a_{n}=3+5 n$.

Some special first-order recurrence relations

The recurrence relation

$$
\begin{aligned}
& a_{n}=a_{n-1}+5, \quad n \geq 1 \\
& a_{0}=3
\end{aligned}
$$

has solution $a_{n}=3+5 n$. In general, if c and d are any numbers then

$$
\begin{aligned}
& a_{n}=a_{n-1}+d, \quad n \geq 1 \\
& a_{0}=c
\end{aligned}
$$

is an arithmetic progression with solution $a_{n}=c+d n$.

Some special first-order recurrence relations

The recurrence relation

$$
\begin{aligned}
& a_{n}=a_{n-1}+5, \quad n \geq 1 \\
& a_{0}=3
\end{aligned}
$$

has solution $a_{n}=3+5 n$. In general, if c and d are any numbers then

$$
\begin{aligned}
& a_{n}=a_{n-1}+d, \quad n \geq 1 \\
& a_{0}=c
\end{aligned}
$$

is an arithmetic progression with solution $a_{n}=c+d n$. Note that $a_{n}-a_{n-1}=d$, and so an arithmetic progression is one where the difference between successive terms is constant.

The recurrence relation

$$
\begin{aligned}
& a_{n}=3 a_{n-1}, \quad n \geq 1 \\
& a_{0}=4
\end{aligned}
$$

has solution $a_{n}=4\left(3^{n}\right)$.

The recurrence relation

$$
\begin{aligned}
& a_{n}=3 a_{n-1}, \quad n \geq 1 \\
& a_{0}=4
\end{aligned}
$$

has solution $a_{n}=4\left(3^{n}\right)$. In general, if c and r are nonzero numbers then

$$
\begin{aligned}
& a_{n}=r a_{n-1}, \quad n \geq 1 \\
& a_{0}=c
\end{aligned}
$$

is a geometric progression with solution $a_{n}=c\left(r^{n}\right)$.

The recurrence relation

$$
\begin{aligned}
& a_{n}=3 a_{n-1}, \quad n \geq 1 \\
& a_{0}=4
\end{aligned}
$$

has solution $a_{n}=4\left(3^{n}\right)$. In general, if c and r are nonzero numbers then

$$
\begin{aligned}
& a_{n}=r a_{n-1}, \quad n \geq 1 \\
& a_{0}=c
\end{aligned}
$$

is a geometric progression with solution $a_{n}=c\left(r^{n}\right)$. Note that $a_{n} / a_{n-1}=r$, and so a geometric progression is one where the ratio between successive terms is a constant.

More special first-order recurrence relations

An example like $a_{n}=a_{n-1}+n, n \geq 1$, with initial condition $a_{0}=1$, is similar to an arithmetic progression, but the difference is not constant.

More special first-order recurrence relations

An example like $a_{n}=a_{n-1}+n, n \geq 1$, with initial condition $a_{0}=1$, is similar to an arithmetic progression, but the difference is not constant.

$$
a_{1}=a_{0}+1=2
$$

More special first-order recurrence relations

An example like $a_{n}=a_{n-1}+n, n \geq 1$, with initial condition $a_{0}=1$, is similar to an arithmetic progression, but the difference is not constant.

$$
\begin{aligned}
& a_{1}=a_{0}+1=2 \\
& a_{2}=a_{1}+2=4
\end{aligned}
$$

More special first-order recurrence relations

An example like $a_{n}=a_{n-1}+n, n \geq 1$, with initial condition $a_{0}=1$, is similar to an arithmetic progression, but the difference is not constant.

$$
\begin{aligned}
& a_{1}=a_{0}+1=2 \\
& a_{2}=a_{1}+2=4 \\
& a_{3}=a_{2}+3=7
\end{aligned}
$$

More special first-order recurrence relations

An example like $a_{n}=a_{n-1}+n, n \geq 1$, with initial condition $a_{0}=1$, is similar to an arithmetic progression, but the difference is not constant.

$$
\begin{aligned}
& a_{1}=a_{0}+1=2 \\
& a_{2}=a_{1}+2=4 \\
& a_{3}=a_{2}+3=7 \\
& a_{4}=a_{3}+4=11
\end{aligned}
$$

More special first-order recurrence relations

An example like $a_{n}=a_{n-1}+n, n \geq 1$, with initial condition $a_{0}=1$, is similar to an arithmetic progression, but the difference is not constant.

$$
\begin{aligned}
& a_{1}=a_{0}+1=2 \\
& a_{2}=a_{1}+2=4 \\
& a_{3}=a_{2}+3=7 \\
& a_{4}=a_{3}+4=11
\end{aligned}
$$

We can solve it as follows: imagine all the equations between the first and the n th:

$$
\begin{aligned}
a_{1} & =a_{0}+1 \\
a_{2} & =a_{1}+2 \\
& \vdots \\
& \vdots \\
a_{n} & =a_{n-1}+n
\end{aligned}
$$

More special first-order recurrence relations

An example like $a_{n}=a_{n-1}+n, n \geq 1$, with initial condition $a_{0}=1$, is similar to an arithmetic progression, but the difference is not constant.

$$
\begin{aligned}
& a_{1}=a_{0}+1=2 \\
& a_{2}=a_{1}+2=4 \\
& a_{3}=a_{2}+3=7 \\
& a_{4}=a_{3}+4=11
\end{aligned}
$$

We can solve it as follows: imagine all the equations between the first and the n th:

$$
\begin{aligned}
a_{1} & =a_{0}+1 \\
a_{2} & =a_{1}+2 \\
& \vdots \\
& \vdots \\
a_{n} & =a_{n-1}+n
\end{aligned}
$$

Now imagine adding these together...

$$
a_{1}+a_{2}+\cdots+a_{n}=a_{0}+a_{1}+\cdots+a_{n-1}+1+2+\cdots+n
$$

$$
a_{1}+a_{2}+\cdots+a_{n}=a_{0}+a_{1}+\cdots+a_{n-1}+1+2+\cdots+n
$$

Now cancel common terms from both sides (a_{1} through a_{n-1}) to get $a_{n}=a_{0}+(1+2+\cdots+n)=1+\frac{n(n+1)}{2}$.

$$
a_{1}+a_{2}+\cdots+a_{n}=a_{0}+a_{1}+\cdots+a_{n-1}+1+2+\cdots+n
$$

Now cancel common terms from both sides (a_{1} through a_{n-1}) to get $a_{n}=a_{0}+(1+2+\cdots+n)=1+\frac{n(n+1)}{2}$.
In general, a recurrence relation of the form

$$
a_{n}=a_{n-1}+f(n), \quad n \geq 1
$$

$$
a_{1}+a_{2}+\cdots+a_{n}=a_{0}+a_{1}+\cdots+a_{n-1}+1+2+\cdots+n
$$

Now cancel common terms from both sides (a_{1} through a_{n-1}) to get $a_{n}=a_{0}+(1+2+\cdots+n)=1+\frac{n(n+1)}{2}$.
In general, a recurrence relation of the form

$$
a_{n}=a_{n-1}+f(n), \quad n \geq 1
$$

Can be solved similarly: add the following

$$
\begin{aligned}
a_{1} & =a_{0}+f(1) \\
a_{2} & =a_{1}+f(2) \\
& \vdots \\
& \vdots \\
a_{n} & =a_{n-1}+f(n)
\end{aligned}
$$

$$
a_{1}+a_{2}+\cdots+a_{n}=a_{0}+a_{1}+\cdots+a_{n-1}+1+2+\cdots+n
$$

Now cancel common terms from both sides (a_{1} through a_{n-1}) to get $a_{n}=a_{0}+(1+2+\cdots+n)=1+\frac{n(n+1)}{2}$.
In general, a recurrence relation of the form

$$
a_{n}=a_{n-1}+f(n), \quad n \geq 1
$$

Can be solved similarly: add the following

$$
\begin{aligned}
a_{1} & =a_{0}+f(1) \\
a_{2} & =a_{1}+f(2) \\
& \vdots \\
& \vdots \\
a_{n} & =a_{n-1}+f(n)
\end{aligned}
$$

to get $a_{1}+a_{2}+\cdots+a_{n}=a_{0}+a_{1}+\cdots+a_{n-1}+\sum_{j=1}^{n} f(j)$. Then cancel to get $a_{n}=a_{0}+\sum_{j=1}^{n} f(j)$. Then fill in the initial condition.

An example like $a_{n}=2^{n-1} a_{n-1}, n \geq 1$, with initial condition $a_{0}=3$, is similar to an geometric progression, but the ratios are not constant.

An example like $a_{n}=2^{n-1} a_{n-1}, n \geq 1$, with initial condition $a_{0}=3$, is similar to an geometric progression, but the ratios are not constant.

$$
a_{1}=2^{0} a_{0}=3
$$

An example like $a_{n}=2^{n-1} a_{n-1}, n \geq 1$, with initial condition $a_{0}=3$, is similar to an geometric progression, but the ratios are not constant.

$$
\begin{aligned}
& a_{1}=2^{0} a_{0}=3 \\
& a_{2}=2^{1} a_{1}=6
\end{aligned}
$$

An example like $a_{n}=2^{n-1} a_{n-1}, n \geq 1$, with initial condition $a_{0}=3$, is similar to an geometric progression, but the ratios are not constant.

$$
\begin{aligned}
a_{1} & =2^{0} a_{0}=3 \\
a_{2} & =2^{1} a_{1}=6 \\
a_{3} & =2^{2} a_{2}=24
\end{aligned}
$$

An example like $a_{n}=2^{n-1} a_{n-1}, n \geq 1$, with initial condition $a_{0}=3$, is similar to an geometric progression, but the ratios are not constant.

$$
\begin{aligned}
& a_{1}=2^{0} a_{0}=3 \\
& a_{2}=2^{1} a_{1}=6 \\
& a_{3}=2^{2} a_{2}=24 \\
& a_{4}=2^{3} a_{3}=192
\end{aligned}
$$

An example like $a_{n}=2^{n-1} a_{n-1}, n \geq 1$, with initial condition $a_{0}=3$, is similar to an geometric progression, but the ratios are not constant.

$$
\begin{aligned}
a_{1} & =2^{0} a_{0}=3 \\
a_{2} & =2^{1} a_{1}=6 \\
a_{3} & =2^{2} a_{2}=24 \\
a_{4} & =2^{3} a_{3}=192
\end{aligned}
$$

But we can solve it as follows: imagine all the equations between the first and the n th:

$$
\begin{aligned}
a_{1} & =2^{0} a_{0} \\
a_{2} & =2^{1} a_{1} \\
& \vdots \\
& \\
a_{n} & =2^{n-1} a_{n-1}
\end{aligned}
$$

An example like $a_{n}=2^{n-1} a_{n-1}, n \geq 1$, with initial condition $a_{0}=3$, is similar to an geometric progression, but the ratios are not constant.

$$
\begin{aligned}
a_{1} & =2^{0} a_{0}=3 \\
a_{2} & =2^{1} a_{1}=6 \\
a_{3} & =2^{2} a_{2}=24 \\
a_{4} & =2^{3} a_{3}=192
\end{aligned}
$$

But we can solve it as follows: imagine all the equations between the first and the n th:

$$
\begin{aligned}
a_{1} & =2^{0} a_{0} \\
a_{2} & =2^{1} a_{1} \\
& \vdots \\
a_{n} & =2^{n-1} a_{n-1}
\end{aligned}
$$

Now imagine multiplying these together...

$$
a_{1} a_{2} \cdots a_{n}=2^{0} 2^{1} \cdots 2^{n-1} a_{0} a_{1} \cdots a_{n-1}
$$

$$
a_{1} a_{2} \cdots a_{n}=2^{0} 2^{1} \cdots 2^{n-1} a_{0} a_{1} \cdots a_{n-1}
$$

Now cancel common factors from both sides (a_{1} through a_{n-1}) to get $a_{n}=2^{0} 2^{1} \cdots 2^{n-1} a_{0}=2^{n(n-1) / 2} 3$

$$
a_{1} a_{2} \cdots a_{n}=2^{0} 2^{1} \cdots 2^{n-1} a_{0} a_{1} \cdots a_{n-1}
$$

Now cancel common factors from both sides (a_{1} through a_{n-1}) to get $a_{n}=2^{0} 2^{1} \cdots 2^{n-1} a_{0}=2^{n(n-1) / 2} 3$
In general, a recurrence relation of the form

$$
a_{n}=f(n) a_{n-1}, \quad n \geq 1
$$

Can be solved similarly:

$$
a_{1} a_{2} \cdots a_{n}=2^{0} 2^{1} \cdots 2^{n-1} a_{0} a_{1} \cdots a_{n-1}
$$

Now cancel common factors from both sides (a_{1} through a_{n-1}) to get $a_{n}=2^{0} 2^{1} \cdots 2^{n-1} a_{0}=2^{n(n-1) / 2} 3$
In general, a recurrence relation of the form

$$
a_{n}=f(n) a_{n-1}, \quad n \geq 1
$$

Can be solved similarly: multiply the following

$$
\begin{aligned}
a_{1} & =f(1) a_{0} \\
a_{2} & =f(2) a_{1} \\
& \vdots \\
a_{n} & =f(n) a_{n-1}
\end{aligned}
$$

$$
a_{1} a_{2} \cdots a_{n}=2^{0} 2^{1} \cdots 2^{n-1} a_{0} a_{1} \cdots a_{n-1}
$$

Now cancel common factors from both sides (a_{1} through a_{n-1}) to get $a_{n}=2^{0} 2^{1} \cdots 2^{n-1} a_{0}=2^{n(n-1) / 2} 3$
In general, a recurrence relation of the form

$$
a_{n}=f(n) a_{n-1}, \quad n \geq 1
$$

Can be solved similarly: multiply the following

$$
\begin{aligned}
a_{1} & =f(1) a_{0} \\
a_{2} & =f(2) a_{1} \\
& \vdots \\
a_{n} & =f(n) a_{n-1}
\end{aligned}
$$

to get $a_{1} a_{2} \cdots a_{n}=a_{0} a_{1} \cdots a_{n-1} f(1) f(2) \cdots f(n)$. Then cancel to get $a_{n}=a_{0} f(1) f(2) \cdots f(n)$, then fill in the initial condition.

A couple more examples

$$
\begin{aligned}
a_{n} & =a_{n-1}+3^{n}, \quad n \geq 1 \\
a_{0} & =1
\end{aligned}
$$

A couple more examples

$$
\begin{aligned}
a_{n} & =a_{n-1}+3^{n}, \quad n \geq 1 \\
a_{0} & =1
\end{aligned}
$$

has solution

$$
a_{n}=1+3+3^{2}+\cdots+3^{n}
$$

A couple more examples

$$
\begin{aligned}
& a_{n}=a_{n-1}+3^{n}, \quad n \geq 1 \\
& a_{0}=1
\end{aligned}
$$

has solution

$$
\begin{aligned}
& a_{n}=1+3+3^{2}+\cdots+3^{n} \\
& \\
& \quad \begin{array}{l}
a_{n}=2 n^{2} a_{n-1}, \quad n \geq 1 \\
a_{0}=5
\end{array}
\end{aligned}
$$

A couple more examples

$$
\begin{aligned}
a_{n} & =a_{n-1}+3^{n}, \quad n \geq 1 \\
a_{0} & =1
\end{aligned}
$$

has solution

$$
\begin{aligned}
& a_{n}=1+3+3^{2}+\cdots+3^{n} \\
& \quad \begin{array}{l}
a_{n}=2 n^{2} a_{n-1}, \quad n \geq 1 \\
a_{0}=5
\end{array}
\end{aligned}
$$

has solution

$$
a_{n}=2\left(1^{2}\right) 2\left(2^{2}\right) 2\left(3^{2}\right) \cdots 2\left(n^{2}\right) 5
$$

A couple more examples

$$
\begin{aligned}
a_{n} & =a_{n-1}+3^{n}, \quad n \geq 1 \\
a_{0} & =1
\end{aligned}
$$

has solution

$$
\begin{aligned}
& a_{n}=1+3+3^{2}+\cdots+3^{n} \\
& \quad \begin{array}{l}
a_{n}=2 n^{2} a_{n-1}, \quad n \geq 1 \\
a_{0}=5
\end{array}
\end{aligned}
$$

has solution

$$
a_{n}=2\left(1^{2}\right) 2\left(2^{2}\right) 2\left(3^{2}\right) \cdots 2\left(n^{2}\right) 5
$$

Sometimes we can simplify these further (and sometimes we can't). I will never expect you to simplify such answers.

