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The following is an example of a recurrence relation problem
ap =0an—1+1, n>1,
ag = 0.

This should be understood as follows:

1. There is some unknown sequence ag, 1,02 ...,0n, .. ..
2. 'ap = 0" means that sequence starts with 0.
3. ‘ap = an—1 + 1, n > 1" means that every term in the sequence,
starting with n = 1, is 1 more than the one before it.
Notice that the third item could equally well be expressed by
‘Uny1 =an+1, n>0."
The ‘problem’ is to find a formula for a,, as a function of n.

It should be clear that a1 = ag+1=0+1=1, a3 =a1 +1=1+1=2,
and so on. We can guess that a,, = n for all n.

2/14



That guess seems very likely correct but, in general, how do we check that
it is?
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That guess seems very likely correct but, in general, how do we check that
it is? First, any formula should satisfy the initial condition(s)

ag = 0.
If a,, = n for all n then, substituting n = 0 gives ag = 0, so that checks.

Second, any formula should satisfy the recurrence relation
ap =an—1+1, n>1,

If we substitute n — 1 for n in the formula
an, =n, we get
apn_1=n-—1

Putting these 2 into the recurrence relation
an = an_1 + 1 gives
n =mn — 1+ 1, which is true for all n.
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Another example:
ap =2ap,-1+3, n=>1

CLO:2.

4/14



Another example:
ap =2ap,-1+3, n=>1

CLO:2.

| claim the solution is a,, = 5(2") — 3.

4/14



Another example:
ap =2ap,-1+3, n=>1
ag = 2.
| claim the solution is a, = 5(2") — 3. To see this, first check the initial

condition:
aop = 5(2°) — 3 = 2, so that checks.

4/14



Another example:
ap =2ap,-1+3, n=>1
ag = 2.
| claim the solution is a, = 5(2") — 3. To see this, first check the initial
condition:
aop = 5(2°) — 3 = 2, so that checks.
Then check the the recurrence relation. Since a,—1 = 52" 1) — 3, we

have to see if
5(2") — 3 =2(5(2""1) — 3) + 3.

4/14



Another example:
ap =2ap,-1+3, n=>1

CLO:2.

| claim the solution is a, = 5(2") — 3. To see this, first check the initial
condition:

aop = 5(2°) — 3 = 2, so that checks.
Then check the the recurrence relation. Since a,—1 = 52" 1) — 3, we
have to see if

5(2") — 3 =2(5(2" 1) — 3) + 3.
Since the right side simplifies to 5(2™) — 6 + 3, they are equal.

4/14



Another example:
ap =2ap,-1+3, n=>1

CLO:2.

| claim the solution is a, = 5(2") — 3. To see this, first check the initial
condition:

aop = 5(2°) — 3 = 2, so that checks.
Then check the the recurrence relation. Since a,—1 = 52" 1) — 3, we
have to see if

5(2") =3 =2(5(2""1) - 3) + 3.
Since the right side simplifies to 5(2") — 6 + 3, they are equal.
As we learn techniques for solving recurrence relations, keep in mind that a
single recurrence relation like a,, = 2a,,—1 + 3 is, in reality, an infinite
sequence of equations.
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That infinite sequence of equations is, counting the initial condition,

ag =2

a1 = 2ag + 3
as = 2a1 + 3
asz = 2as + 3
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That infinite sequence of equations is, counting the initial condition,

ag =2

a1 = 2ag + 3
as = 2a1 + 3
asz = 2as + 3

It is impossible to find a number for every a,,, but it is often possible to
find a formula for them all.

Every recurrence can be programmed into a loop that will generate some
of the values. For example
numeric al];
al0] = 2;
for n = 1 upto 1000:
a[n] := 2*xa[n-1] + 3;
endfor
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A better program might take the desired position in the sequence as input
(say in the variable M) and replace the second line with
for n = 1 upto M:
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A better program might take the desired position in the sequence as input
(say in the variable M) and replace the second line with

for n = 1 upto M:
With the formula that we have, we can just do aiggp = 5(21000) -3,
as000 = 5(22°9°) — 3, and so on for any position.

Here is another example:
An = Nap_1, n>1
apg = 2.
It is easy to get a1 = 2, as = 4, a3 = 12, a4 = 48 and so on.

The formula is actually a,, = 2 - n!. Because putting this and
an—1 = 2(n — 1)! into the recurrence relation gives:
2(n!) =n(2(n—1)!),
which is correct for every n > 1 and the initial condition
ap=2-01=2
is correct.
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The order of a recurrence relation is the largest difference between the
subscipts on the variables a,.
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The order of a recurrence relation is the largest difference between the
subscipts on the variables a,,. The three examples so far have all had order
1. Some higher order examples:
Ap = Gp—1+ Gp_2, N >2 order 2
Ontd4 = Gp430n4+2 + 2a,, n >0 order 4

n—1
an =3 _gaj, mn=>1 order oo

Many infinite order recurrence relations can be modified to become a finite
order relation for a related sequence. For example, if we let

n
Sp = Zaj so that a, = S, — Sn_1,
§=0
then the last relation above can be written s,, — s,,—1 = $,,—1, which has
order 1.
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Some special first-order recurrence relations
The recurrence relation
ap =0ap-1+95 n>1
ag = 3

has solution a,, = 3 + 5n.
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ag = 3
has solution a,, = 3 + 5n. In general, if ¢ and d are any numbers then
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is an arithmetic progression with solution a,, = ¢ 4+ dn. Note that

an — an—1 = d, and so an arithmetic progression is one where the
difference between successive terms is constant.
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The recurrence relation
ap =3ap—1, n>1
ag = 4
has solution a,, = 4(3™). In general, if ¢ and r are nonzero numbers then
ap =Tp—1, n>1
apg = ¢C

is a geometric progression with solution a, = c¢(r"). Note that
ap/an—1 =1, and so a geometric progression is one where the ratio
between successive terms is a constant.
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More special first-order recurrence relations

An example like a, = an_1 +n, n > 1, with initial condition a9 =1, is
similar to an arithmetic progression, but the difference is not constant.
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More special first-order recurrence relations
An example like a, = an_1 +n, n > 1, with initial condition a9 =1, is
similar to an arithmetic progression, but the difference is not constant.
ap=ag+1=2
ag=a1+2=414
az=ax+3=7
ag=a3+4=11
We can solve it as follows: imagine all the equations between the first and
the nth:
ar =ag+1
as =ai +2

Gp = Ap—1+MN

Now imagine adding these together. ..
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aptaz+--F+ap=ata+--+tap1+1+24+--+n
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Now cancel common terms from both sides (a; through a,—1) to get
an = ag+ (1+2+---+n) =14 20t
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ata+--+ay,=at+ar+--+a1+1+2+---+n
Now cancel common terms from both sides (a; through a,—1) to get
an = ag+ (1+2+---+n) =14 20t
In general, a recurrence relation of the form
an =ap—1+ f(n), n>1

Can be solved similarly: add the following

ar =ap+ f(1)

az = a1 + f(2)

ap = Ap—1 + f(n)
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ata+--+ay,=at+ar+--+a1+1+2+---+n
Now cancel common terms from both sides (a; through a,—1) to get
an = ag+ (1+2+---+n) =14 20t
In general, a recurrence relation of the form
an =ap—1+ f(n), n>1

Can be solved similarly: add the following

ar =ap+ f(1)

az = a1 + f(2)

ap = Ap—1 + f(n)

togeta; +as+---+ay, :ao—l—al—l—u‘—kan_l—i—zg”zlf(j). Then
cancel to get a, = ag + _5_, f(j). Then fill in the initial condition.
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An example like a,, = 2" 'a,_1, n > 1, with initial condition ay = 3, is
similar to an geometric progression, but the ratios are not constant.
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a] = 200,0 =3

as =2'a; =6

ag = 2%ay = 24
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and the nth:
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An example like a,, = 2" 'a,_1, n > 1, with initial condition ay = 3, is
similar to an geometric progression, but the ratios are not constant.

a] = 200,0 =3

as =2'a; =6

ag = 2%ay = 24

as = 23a3 = 192
But we can solve it as follows: imagine all the equations between the first
and the nth:

a] = 20a0

ag = 21a1

ap = 2n_1an71

Now imagine multiplying these together. ..
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Now cancel common factors from both sides (a; through a,_1) to get
ap = 2091 ... 2n—1a0 — 2n(n—1)/23
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Now cancel common factors from both sides (a; through a,_1) to get
ap = 2091 ... 2n—1a0 — 2n(n—1)/23

In general, a recurrence relation of the form
an = f(n)ap—1, n>1
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a1a9 - Ay = 2021 e 2“71010(11 C Gp—1

Now cancel common factors from both sides (a; through a,_1) to get
ap = 2091 ... 2n—1a0 — 2n(n—1)/23

In general, a recurrence relation of the form
an = f(n)ap—1, n>1
Can be solved similarly: multiply the following
a1 = f(1)ao
az = f(2)a

an = f(n)an—l
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ajas - -ap =221 2" lapay - an_q
Now cancel common factors from both sides (a; through a,_1) to get
an =202t ... 2"~ 1gy = on(n=1)/23
In general, a recurrence relation of the form
an = f(n)ap—1, n>1

Can be solved similarly: multiply the following

a1 = f(1)ao

az = f(2)ar

an = f(n)an—l

to get ajag - ap = apay - an—1f(1)f(2) - f(n). Then cancel to get
an = aof(1)f(2)--- f(n), then fill in the initial condition.
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A couple more examples

ap = Gp—1+3"%, n>1
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Ap = Gp—1+3", n>1

ag=1
has solution
an=1+43+3%+.. 43"
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A couple more examples

Ap = Gp—1+3", n>1

ag=1
has solution
an=1+43+3%+.. 43"
Ay = 2n2an_1, n>1
ag — 5
has solution

an = 2(1%)2(2%)2(3%) - - - 2(n?) 5.

Sometimes we can simplify these further (and sometimes we can't). | will
never expect you to simplify such answers.
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