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Derangements

If a permutation (thought of as objects placed in some order or as a
one-to-one function) is given, a derangement is a permutation that differs
from that one in every position. How many are there?

We attacked this problem using inclusion exclusion where the conditions
were: cj = ‘the element in position j was not moved’. If there are n
objects in the permutation, there will be n conditions. We worked out that
N(cj) = (n− 1)! for each condition, that N(cjck) = (n− 2)! for all pairs,
and so on. Then each Sk is the sum of C(n, k) equal terms and so

Sk =

(
n

k

)
(n− k)! =

n!

k!

And so the number of derangements is

dn = N − S1 + S2 − · · · ± Sn = n!− n!

1!
+

n!

2!
− n!

3!
+ · · · ± n!

n!

= n!

(
1− 1

1!
+

1

2!
− · · · ± 1

n!

)
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Since every Sk is known we can also answer such questions as how many
permutations have at least (or exactly) r positions the same as the
original.

For exactly r positions, instead of the long formula for Er there is
a shortcut: Pick which r positions to leave the same (C(n, r) ways) and
then put the remaining n− r objects in different places (dn−r ways). So,
for derangements

Er =

(
n

r

)
dn−r
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Rook polynomials

A chessboard is any set of squares inside a rectangular grid.

The rook
problem is to find how many ways a given number of identical objects
(called ‘rooks’) can be placed on a given chessboard with no more than
one rook in any row of the grid and no more than one rook in any column
of the grid. If the chessboard is called C and the number of rooks is k this
number of ways is called rk(C) (or just rk for short). These are called the
rook numbers.

The rook numbers of a given chessboard can be placed in a polynomial
called the rook polynomial , r(C, x). Thus,

r(C, x) =
∞∑
k=0

rk(C)xk.
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We have two formulas for finding rook polynomals. The product formula
only applies when the chessboard has the following format:

C =
C1 =

C2 =

where the chessboard comes in 2 parts C1 and C2 such that no row or
column of the grid has squares from both parts.

In that case we have the formula r(C, x) = r(C1, x)r(C2, x). In the above
example, we get

r(C, x) = (1 + 4x+ 2x2)(1 + 5x+ 5x2) = 1 + 9x+ 27x2 + 30x3 + 10x4.

Note that r0 is always 1 and r1 is always the number of squares.
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For small chessboards (with at most 2 rows or 2 columns) we usually get
the rook polynomial by working out how many possibilities, considering
cases.

For example, putting two rooks in C2 requires one in each row. If
the rook in the first row is in the left square, there are 3 ways to place the
rook in the second row. If the rook in the first row is in the right square,
there are 2 ways to place the rook in the second row. These add up to 5,
giving the 5x2 term in r(C2, x).

6 / 11



For small chessboards (with at most 2 rows or 2 columns) we usually get
the rook polynomial by working out how many possibilities, considering
cases. For example, putting two rooks in C2 requires one in each row. If
the rook in the first row is in the left square, there are 3 ways to place the
rook in the second row.

If the rook in the first row is in the right square,
there are 2 ways to place the rook in the second row. These add up to 5,
giving the 5x2 term in r(C2, x).

6 / 11



For small chessboards (with at most 2 rows or 2 columns) we usually get
the rook polynomial by working out how many possibilities, considering
cases. For example, putting two rooks in C2 requires one in each row. If
the rook in the first row is in the left square, there are 3 ways to place the
rook in the second row. If the rook in the first row is in the right square,
there are 2 ways to place the rook in the second row.

These add up to 5,
giving the 5x2 term in r(C2, x).

6 / 11



For small chessboards (with at most 2 rows or 2 columns) we usually get
the rook polynomial by working out how many possibilities, considering
cases. For example, putting two rooks in C2 requires one in each row. If
the rook in the first row is in the left square, there are 3 ways to place the
rook in the second row. If the rook in the first row is in the right square,
there are 2 ways to place the rook in the second row. These add up to 5,
giving the 5x2 term in r(C2, x).

6 / 11



Our second formula applies to any chessboard. For example, chessboard C
below:

C =
∗

Ce = Cs =

If we remove the marked square, we get Ce and if we also remove all
squares in the same row and column, we get Cs.

The formula is r(C, x) = r(Ce, x) + x · r(Cs, x). In this example, we get

r(C, x) = (1 + 3x+ x2)(1 + 3x+ x2) + x(1 + 2x)(1 + x)

= 1 + 7x+ 14x2 + 8x3 + x4
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We apply rook polynomials to problems like the following:

A

B

C

D

1 2 3 4 5 6 7

This diagram represents the possibilities for seating 4 people in 7 seats.
The shaded squares correspond to forbidden seats. We want to compute
the number of ways to seat them all without putting anyone in a forbidden
seat.

If we ignore which assignments are forbidden, there are P (7, 4) ways. This
is the N of an inclusion-excusion problem.

8 / 11



We apply rook polynomials to problems like the following:

A

B

C

D

1 2 3 4 5 6 7

This diagram represents the possibilities for seating 4 people in 7 seats.
The shaded squares correspond to forbidden seats. We want to compute
the number of ways to seat them all without putting anyone in a forbidden
seat.

If we ignore which assignments are forbidden, there are P (7, 4) ways. This
is the N of an inclusion-excusion problem.

8 / 11



We use the conditions cj = ‘the jth person is seated in a forbidden seat’.
We discovered that

S1 = r1P (6, 3), S2 = r2P (5, 2), S3 = r3P (4, 1), S4 = r4P (3, 0)

where the rk are the rook numbers for the chessboard of shaded squares.

We can compute the rook polynomial to be 1 + 7x+ 15x2 + 11x3 + 2x4.
So that the number of ways to seat these 4 people respecting the
forbidden seating is

N − S1 + S2 − S3 + S4

= P (7, 4)− 7P (6, 3) + 15P (5, 2)− 11P (4, 1) + 2P (, 0)

=
7!

3!
− 7

6!

3!
+ 15

5!

3!
− 11

4!

3!
+ 2

3!

3!
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Generating functions

We seek the number of solution to equations like the following
b1 + b2 + b3 = n

where the variables are subject to conditions like the following
2 ≤ b1 ≤ 31
8 ≤ b2
0 ≤ b3 ≤ 29.

We first find the generating functions for the one-variable problems. This
is entirely determined by the conditions. Thus,

for b1 the generating function is x2 + x3 + · · ·x31 = x2 − x32

1− x

for b2 the generating function is x8 + x9 + x10 + · · · = x8

1− x

for b3 the generating function is 1 + x+ x2 + · · ·x29 = 1− x30

1− x
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So the generating function for the complete problem is the product of
these:

F (x) =
x2 − x32

1− x

x8

1− x

1− x20

1− x
=

x10 − 2x40 + x70

(1− x)3

The meaning of ‘generating function’ is that it encodes the sequence in
question (number of solutions for different n in this case) as the
coefficients of xn. We find the number of solutions for any value of n by
finding xn in F (x) and reading off the number.

Let’s take n = 90. First we rewrite F (x):

F (x) = (x10 − 2x40 + x70)

∞∑
j=0

(
j + 2

j

)
xj

we find x90 in these three terms:

x10
(
82

80

)
x80 − 2x40

(
52

50

)
x50 + x70

(
22

20

)
x20.

So the number of solutions is

(
82

80

)
− 2

(
52

50

)
+

(
22

20

)
.
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