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Rule of sum

Rule

If one task can be done in m ways while another task can be performed in
k ways, and the two tasks cannot be performed simultaneously, then there
are m+ k possible ways to perform one or the other task.

We use this to count collections of things, where the tasks result in an
object in the set we are counting. For this to work, there should be a
one-to-one correspondence between the ways of completing the tasks and
the collection we are counting.

The rule of sum extends to any number of tasks, as long as no two tasks
can be performed simultaneously.
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Rule of product

Rule

Suppose one task can be performed in m ways and a second task can be
performed in k ways. Then the number of ways to perform the first
followed by the second is mk.

This rule extends to a sequence of any number of tasks.

It is important, in applications, that the following are satisfied

1. The number of ways to perform a task does not depend on the
outcome of the other tasks.

2. If we use this to count final outcomes, we must have
• If any one task is done differently, the final outcome is different.
• All final outcomes are produced by some way of performing the

sequence of tasks.
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Permutations

A permutation on a set A is a subset of A arranged in order.

We are interested in the number of possible permutations. That number
doesn’t depend on what is in the set A, only on how many elements A has
and on how many elements we are choosing to put in order.

Definition: P (n, k) stands for the number of permutations possible when
choosing k elements from a set of size n.

P (n, k) =
n!

(n− k)!

There is a one-to-one correspondence between permutations of k things
from an n-set and one-to-one functions from any k-set A into and n-set
B. that is, P (n, k) is the number of one-to-one functions from A to B.
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Permutations with repetition (arrangements)

How many ways can we arrange the letters of the string "BOOKKEEPER"?

To be clear what this means, imagine we write each letter on a tile,
B O O K K E E P E R , then we shuffle these tiles and line
them up, recording the resulting string of letters.

If we count each tile as different, we get 10! permutations. But if, for
example, all we do is exchange the two O -tiles we don’t get different
strings. Same for the K -tiles and E -tiles.

We have 2!2!3! different permutations of tiles that produce the same
string. We have a set (all permutations of tiles) divided into clusters of
equal size (2!2!3!) and we want the number of clusters: divide the number

of permutations by the size of the clusters:
10!

2!2!3!
.
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Permutations with (sub)strings attached

We know there are 8!/2! arrangements of "GEODESIC". Now how many
contain the substring "DOG"?

If we imagine the letters on tiles again, we
can glue the D , O and G tiles together to get
DOG E E S I C

If we arrange these and record the resulting string we are guaranteed to
get one with the substring "DOG". Since there are 6 objects with 2 of
them identical, there are 6!/2! arrangements.

Note that we can subtract to get the number of arrangements that do not
have the substring "DOG": 8!/2− 6!/2.
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Selections without order

A combination of n things taken k at a time is subset of size k from an
n-set. The distinction between a permutation and a combination is that 2
combinations are the same if they have the same elements, while 2
permutations are the same if they have the same elements in the same
order.

More generally, viewing permutations as a one-to-one functions, then to
get a permutation we have to choose the correct number of elements and
then associate each of those with an element of some set. With a
combination, we are done when we have chosen the elements.

That is, for combinations we just choose them, for permutations we
choose them and then label them.

Definition: C(n, k) stands for the number of combinations possible when
choosing k elements from a set of size n. It has the formula

C(n, k) =
n!

k!(n− k)!
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Combinations with repetition

If we are selecting k times with repetition from a set of size n, then
number of ways to do this is

C(k + n− 1, k) =
(k + n− 1)!

k!(n− 1)!
.

Examples of this: giving k identical prizes to a set of n contestants, with
no limit on what each contestants may get, is like selecting k times, with
repetition allowed, from a set of size n.

Since all that matters is how many prizes each contestant gets, thus is
equivalent to the solutions of the equation

p1 + p2 + · · ·+ pn = k

where each pj is the number of prizes the jth contestant receives.
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Inclusion-exclusion

Suppose we have a set with N elements and these elements might or
might not satisfy come conditions c1, c2, c3, . . . , cr. If we let N(cj) be the
number that satisfy cj , then we let S1 =

∑r
j=1N(cj).

If N(cjck) be the number that satisfy cj and ck, then we let
S2 =

∑
1≤j<k≤r N(cjck). And S3 =

∑
1≤j<k<m≤r N(cjckcm).

Then the number of elements that satisfy none of the conditions is

E0 = N − S1 + S2 − S3 + · · · ± Sr
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The number of elements that satisfy at least one of the conditions is

L1 = S1 − S2 + S3 − · · · ∓ Sr

The number of elements that satisfy exactly one of the conditions is

E1 = S1 − 2S2 + 3S3 − · · · ∓ rSr

If Lk is the number that satisfy at least k conditions and Ek is the number
that satisfy exactly k conditions, the book has formulas for these as well

It is useful to know that the number of terms in each sum Sk is C(r, k) if
there are r conditions.
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