# Generating Functions, cont. 

Daniel H. Luecking

September 18, 2023

## Introducing the main problem

How many solutions does the following equation have if all the variables are required to be integers satisfying the stated conditions.

$$
\begin{aligned}
& y_{1}+y_{2}+y_{3}+y_{4}=n \\
& \quad 0 \leq y_{1} \\
& 5 \leq y_{2} \\
& 0 \leq y_{3} \leq 19 \\
& 10 \leq y_{4} \leq 29
\end{aligned}
$$

## Introducing the main problem

How many solutions does the following equation have if all the variables are required to be integers satisfying the stated conditions.

$$
\begin{aligned}
& y_{1}+y_{2}+y_{3}+y_{4}=n \\
& 0 \leq y_{1} \\
& 5 \leq y_{2} \\
& 0 \leq y_{3} \leq 19 \\
& 10 \leq y_{4} \leq 29
\end{aligned}
$$

Obviously the number of solutions depends on what $n$ is. If we call the number of solutions $c_{n}$, then our first goal is to find the generating function $G(x)$ for the sequence $c_{n}$.

## Introducing the main problem

How many solutions does the following equation have if all the variables are required to be integers satisfying the stated conditions.

$$
\begin{aligned}
& y_{1}+y_{2}+y_{3}+y_{4}=n \\
& \quad 0 \leq y_{1} \\
& 5 \leq y_{2} \\
& 0 \leq y_{3} \leq 19 \\
& 10 \leq y_{4} \leq 29
\end{aligned}
$$

Obviously the number of solutions depends on what $n$ is. If we call the number of solutions $c_{n}$, then our first goal is to find the generating function $G(x)$ for the sequence $c_{n}$.
Following our previous discussion, we need to find the generating function for $a_{i}$, which is the number of solutions of $y_{1}=i$. The condition $y_{1} \geq 0$ is no real condition, so $a_{i}=1$ for $i=0,1,2, \ldots$.

## Introducing the main problem

How many solutions does the following equation have if all the variables are required to be integers satisfying the stated conditions.

$$
\begin{aligned}
& y_{1}+y_{2}+y_{3}+y_{4}=n \\
& \quad 0 \leq y_{1} \\
& 5 \leq y_{2} \\
& 0 \leq y_{3} \leq 19 \\
& 10 \leq y_{4} \leq 29
\end{aligned}
$$

Obviously the number of solutions depends on what $n$ is. If we call the number of solutions $c_{n}$, then our first goal is to find the generating function $G(x)$ for the sequence $c_{n}$.
Following our previous discussion, we need to find the generating function for $a_{i}$, which is the number of solutions of $y_{1}=i$. The condition $y_{1} \geq 0$ is no real condition, so $a_{i}=1$ for $i=0,1,2, \ldots$. We've seen that this leads to the generating function $1+x+x^{2}+x^{3}+\cdots=\frac{1}{1-x}$.

We turn to the next variable $y_{2}=j, y_{2} \geq 5$. Because of the condition, this has no solutions for $j<5$. That is, if $b_{j}$ is the number of solutions, then $b_{0}=0, b_{1}=0, b_{2}=0, b_{3}=0$ and $b_{4}=0$.

We turn to the next variable $y_{2}=j, y_{2} \geq 5$. Because of the condition, this has no solutions for $j<5$. That is, if $b_{j}$ is the number of solutions, then $b_{0}=0, b_{1}=0, b_{2}=0, b_{3}=0$ and $b_{4}=0$. The sequence is $0,0,0,0,0,1,1,1, \ldots$ and the generating function is

$$
x^{5}+x^{6}+x^{7}+\cdots=x^{5}\left(1+x+x^{2}+\cdots\right)=\frac{x^{5}}{1-x}
$$

We turn to the next variable $y_{2}=j, y_{2} \geq 5$. Because of the condition, this has no solutions for $j<5$. That is, if $b_{j}$ is the number of solutions, then $b_{0}=0, b_{1}=0, b_{2}=0, b_{3}=0$ and $b_{4}=0$. The sequence is $0,0,0,0,0,1,1,1, \ldots$ and the generating function is

$$
x^{5}+x^{6}+x^{7}+\cdots=x^{5}\left(1+x+x^{2}+\cdots\right)=\frac{x^{5}}{1-x}
$$

For the third variable: $y_{3}=k, 0 \leq y_{3} \leq 19$. The number of solutions is 1 if $k \leq 19$ but is 0 if $k \geq 20$.

We turn to the next variable $y_{2}=j, y_{2} \geq 5$. Because of the condition, this has no solutions for $j<5$. That is, if $b_{j}$ is the number of solutions, then $b_{0}=0, b_{1}=0, b_{2}=0, b_{3}=0$ and $b_{4}=0$. The sequence is $0,0,0,0,0,1,1,1, \ldots$ and the generating function is

$$
x^{5}+x^{6}+x^{7}+\cdots=x^{5}\left(1+x+x^{2}+\cdots\right)=\frac{x^{5}}{1-x}
$$

For the third variable: $y_{3}=k, 0 \leq y_{3} \leq 19$. The number of solutions is 1 if $k \leq 19$ but is 0 if $k \geq 20$. The sequence of numbers of solutions is $1,1,1, \ldots, 1,0,0,0, \ldots$ where the zeros start in the position corresponding to $k=20$.

We turn to the next variable $y_{2}=j, y_{2} \geq 5$. Because of the condition, this has no solutions for $j<5$. That is, if $b_{j}$ is the number of solutions, then $b_{0}=0, b_{1}=0, b_{2}=0, b_{3}=0$ and $b_{4}=0$. The sequence is $0,0,0,0,0,1,1,1, \ldots$ and the generating function is

$$
x^{5}+x^{6}+x^{7}+\cdots=x^{5}\left(1+x+x^{2}+\cdots\right)=\frac{x^{5}}{1-x}
$$

For the third variable: $y_{3}=k, 0 \leq y_{3} \leq 19$. The number of solutions is 1 if $k \leq 19$ but is 0 if $k \geq 20$. The sequence of numbers of solutions is $1,1,1, \ldots, 1,0,0,0, \ldots$ where the zeros start in the position corresponding to $k=20$. The generating functions is

$$
1+x+x^{2}+\cdots+x^{19}=\frac{1-x^{20}}{1-x}
$$

Finally, for the fourth variable, $y_{4}=m, 10 \leq y_{4} \leq 29$. The number of solutions is 0 if $m<10$ or $m>29$ and 1 if $10 \leq m \leq 29$.

Finally, for the fourth variable, $y_{4}=m, 10 \leq y_{4} \leq 29$. The number of solutions is 0 if $m<10$ or $m>29$ and 1 if $10 \leq m \leq 29$. The generating function is

$$
\begin{aligned}
x^{10}+x^{11}+x^{12}+\cdots+x^{29} & =x^{10}\left(1+x^{1}+x^{2}+\cdots+x^{19}\right) \\
& =x^{10} \frac{1-x^{20}}{1-x}=\frac{x^{10}\left(1-x^{20}\right)}{1-x}
\end{aligned}
$$

Finally, for the fourth variable, $y_{4}=m, 10 \leq y_{4} \leq 29$. The number of solutions is 0 if $m<10$ or $m>29$ and 1 if $10 \leq m \leq 29$. The generating function is

$$
\begin{aligned}
x^{10}+x^{11}+x^{12}+\cdots+x^{29} & =x^{10}\left(1+x^{1}+x^{2}+\cdots+x^{19}\right) \\
& =x^{10} \frac{1-x^{20}}{1-x}=\frac{x^{10}\left(1-x^{20}\right)}{1-x}
\end{aligned}
$$

Multiplying the 4 generating functions together we get the grand generating function:

Finally, for the fourth variable, $y_{4}=m, 10 \leq y_{4} \leq 29$. The number of solutions is 0 if $m<10$ or $m>29$ and 1 if $10 \leq m \leq 29$. The generating function is

$$
\begin{aligned}
x^{10}+x^{11}+x^{12}+\cdots+x^{29} & =x^{10}\left(1+x^{1}+x^{2}+\cdots+x^{19}\right) \\
& =x^{10} \frac{1-x^{20}}{1-x}=\frac{x^{10}\left(1-x^{20}\right)}{1-x}
\end{aligned}
$$

Multiplying the 4 generating functions together we get the grand generating function:

$$
G(x)=\frac{1}{1-x} \frac{x^{5}}{1-x} \frac{1-x^{20}}{1-x} \frac{x^{10}\left(1-x^{20}\right)}{1-x}=\frac{x^{15}-2 x^{35}+x^{55}}{(1-x)^{4}}
$$

This gives us the generating function. In order to discover $c_{n}$, we need to be able to find what number is multiplying $x^{n}$ in the expanded version of $G(x)$.

This gives us the generating function. In order to discover $c_{n}$, we need to be able to find what number is multiplying $x^{n}$ in the expanded version of $G(x)$. To get this, we rewrite $G(x)$ as follows:

$$
\begin{aligned}
G(x) & =\left(x^{15}-2 x^{35}+x^{55}\right) \frac{1}{(1-x)^{4}} \\
& =\left(x^{15}-2 x^{35}+x^{55}\right) \sum_{j=0}^{\infty}\binom{j+3}{j} x^{j}
\end{aligned}
$$

This gives us the generating function. In order to discover $c_{n}$, we need to be able to find what number is multiplying $x^{n}$ in the expanded version of $G(x)$. To get this, we rewrite $G(x)$ as follows:

$$
\begin{aligned}
G(x) & =\left(x^{15}-2 x^{35}+x^{55}\right) \frac{1}{(1-x)^{4}} \\
& =\left(x^{15}-2 x^{35}+x^{55}\right) \sum_{j=0}^{\infty}\binom{j+3}{j} x^{j}
\end{aligned}
$$

then we multiply out

$$
\begin{aligned}
G(x)= & \left(x^{15}-2 x^{35}+x^{55}\right)\left[\binom{3}{0}+\binom{4}{1} x+\cdots+\binom{k+3}{k} x^{k}+\cdots\right] \\
= & {\left[\binom{3}{0} x^{15}+\binom{4}{1} x^{16}+\cdots+\binom{k+3}{k} x^{k+15}+\cdots\right] } \\
& +\left[-2\binom{3}{0} x^{35}-2\binom{4}{1} x^{36}-\cdots-2\binom{k+3}{k} x^{k+35}+\cdots\right] \\
& +\left[\binom{3}{0} x^{55}+\binom{4}{1} x^{56}+\cdots+\binom{k+3}{k} x^{k+55}+\cdots\right]
\end{aligned}
$$

Now $x^{n}$ occurs at most once in each set of brackets. It occurs where $k=n-15$ in the first, where $k=n-35$ in the second and where $k=n-55$ in the third. Adding these three terms together we get:

Now $x^{n}$ occurs at most once in each set of brackets. It occurs where $k=n-15$ in the first, where $k=n-35$ in the second and where $k=n-55$ in the third. Adding these three terms together we get:

$$
c_{n} x^{n}=\binom{n-15+3}{n-15} x^{n}-2\binom{n-35+3}{n-35} x^{n}+\binom{n-55+3}{n-55} x^{n}
$$

Now $x^{n}$ occurs at most once in each set of brackets. It occurs where $k=n-15$ in the first, where $k=n-35$ in the second and where $k=n-55$ in the third. Adding these three terms together we get:

$$
c_{n} x^{n}=\binom{n-15+3}{n-15} x^{n}-2\binom{n-35+3}{n-35} x^{n}+\binom{n-55+3}{n-55} x^{n}
$$

from which

$$
c_{n}=\binom{n-15+3}{n-15}-2\binom{n-35+3}{n-35}+\binom{n-55+3}{n-55}
$$

Now $x^{n}$ occurs at most once in each set of brackets. It occurs where $k=n-15$ in the first, where $k=n-35$ in the second and where $k=n-55$ in the third. Adding these three terms together we get:

$$
c_{n} x^{n}=\binom{n-15+3}{n-15} x^{n}-2\binom{n-35+3}{n-35} x^{n}+\binom{n-55+3}{n-55} x^{n}
$$

from which

$$
c_{n}=\binom{n-15+3}{n-15}-2\binom{n-35+3}{n-35}+\binom{n-55+3}{n-55}
$$

If $35 \leq n<55$ then the last set of brackets has no $x^{n}$ in it. So

$$
c_{n}=\binom{n-15+3}{n-15}-2\binom{n-35+3}{n-35}
$$

Now $x^{n}$ occurs at most once in each set of brackets. It occurs where $k=n-15$ in the first, where $k=n-35$ in the second and where $k=n-55$ in the third. Adding these three terms together we get:

$$
c_{n} x^{n}=\binom{n-15+3}{n-15} x^{n}-2\binom{n-35+3}{n-35} x^{n}+\binom{n-55+3}{n-55} x^{n}
$$

from which

$$
c_{n}=\binom{n-15+3}{n-15}-2\binom{n-35+3}{n-35}+\binom{n-55+3}{n-55}
$$

If $35 \leq n<55$ then the last set of brackets has no $x^{n}$ in it. So

$$
c_{n}=\binom{n-15+3}{n-15}-2\binom{n-35+3}{n-35}
$$

If $15 \leq n<35$ then

$$
c_{n}=\binom{n-15+3}{n-15}
$$

Now $x^{n}$ occurs at most once in each set of brackets. It occurs where $k=n-15$ in the first, where $k=n-35$ in the second and where $k=n-55$ in the third. Adding these three terms together we get:

$$
c_{n} x^{n}=\binom{n-15+3}{n-15} x^{n}-2\binom{n-35+3}{n-35} x^{n}+\binom{n-55+3}{n-55} x^{n}
$$

from which

$$
c_{n}=\binom{n-15+3}{n-15}-2\binom{n-35+3}{n-35}+\binom{n-55+3}{n-55}
$$

If $35 \leq n<55$ then the last set of brackets has no $x^{n}$ in it. So

$$
c_{n}=\binom{n-15+3}{n-15}-2\binom{n-35+3}{n-35}
$$

If $15 \leq n<35$ then

$$
c_{n}=\binom{n-15+3}{n-15}
$$

and finally, if $n<15$ then $c_{n}=0$.

## A worked-out example

(a) Given the previous equations and conditions, find the generating function for the number of solutions in a form where the denominator is a power of $(1-x)$ and the numerator is a short sum of powers of $x$.
(b) Use your generating function to find the number of solutions when $n=105$.

## A worked-out example

(a) Given the previous equations and conditions, find the generating function for the number of solutions in a form where the denominator is a power of $(1-x)$ and the numerator is a short sum of powers of $x$.
(b) Use your generating function to find the number of solutions when $n=105$.

A minimal, but complete answer is:

$$
G(x)=\frac{1}{1-x} \frac{x^{5}}{1-x} \frac{1-x^{20}}{1-x} \frac{x^{10}\left(1-x^{20}\right)}{1-x}=\frac{x^{15}-2 x^{35}+x^{55}}{(1-x)^{4}}
$$

## A worked-out example

(a) Given the previous equations and conditions, find the generating function for the number of solutions in a form where the denominator is a power of $(1-x)$ and the numerator is a short sum of powers of $x$.
(b) Use your generating function to find the number of solutions when $n=105$.

A minimal, but complete answer is:

$$
G(x)=\frac{1}{1-x} \frac{x^{5}}{1-x} \frac{1-x^{20}}{1-x} \frac{x^{10}\left(1-x^{20}\right)}{1-x}=\frac{x^{15}-2 x^{35}+x^{55}}{(1-x)^{4}}
$$

Similarly, a minimal answer to (b) might be:

## A worked-out example

(a) Given the previous equations and conditions, find the generating function for the number of solutions in a form where the denominator is a power of $(1-x)$ and the numerator is a short sum of powers of $x$.
(b) Use your generating function to find the number of solutions when $n=105$.

A minimal, but complete answer is:

$$
G(x)=\frac{1}{1-x} \frac{x^{5}}{1-x} \frac{1-x^{20}}{1-x} \frac{x^{10}\left(1-x^{20}\right)}{1-x}=\frac{x^{15}-2 x^{35}+x^{55}}{(1-x)^{4}}
$$

Similarly, a minimal answer to (b) might be:
$G(x)=\left(x^{15}-2 x^{35}+x^{55}\right) \sum_{j=0}^{\infty}\binom{j+3}{j} x^{j}$.

## A worked-out example

(a) Given the previous equations and conditions, find the generating function for the number of solutions in a form where the denominator is a power of $(1-x)$ and the numerator is a short sum of powers of $x$.
(b) Use your generating function to find the number of solutions when $n=105$.

A minimal, but complete answer is:

$$
G(x)=\frac{1}{1-x} \frac{x^{5}}{1-x} \frac{1-x^{20}}{1-x} \frac{x^{10}\left(1-x^{20}\right)}{1-x}=\frac{x^{15}-2 x^{35}+x^{55}}{(1-x)^{4}}
$$

Similarly, a minimal answer to (b) might be:
$G(x)=\left(x^{15}-2 x^{35}+x^{55}\right) \sum_{j=0}^{\infty}\binom{j+3}{j} x^{j}$. The $x^{105}$ term is
$x^{15}\binom{90+3}{90} x^{90}-2 x^{35}\binom{70+3}{70} x^{70}+x^{55}\binom{50+3}{50} x^{50}$.

## A worked-out example

(a) Given the previous equations and conditions, find the generating function for the number of solutions in a form where the denominator is a power of $(1-x)$ and the numerator is a short sum of powers of $x$.
(b) Use your generating function to find the number of solutions when $n=105$.

A minimal, but complete answer is:

$$
G(x)=\frac{1}{1-x} \frac{x^{5}}{1-x} \frac{1-x^{20}}{1-x} \frac{x^{10}\left(1-x^{20}\right)}{1-x}=\frac{x^{15}-2 x^{35}+x^{55}}{(1-x)^{4}}
$$

Similarly, a minimal answer to (b) might be:
$G(x)=\left(x^{15}-2 x^{35}+x^{55}\right) \sum_{j=0}^{\infty}\binom{j+3}{j} x^{j}$. The $x^{105}$ term is
$x^{15}\binom{90+3}{90} x^{90}-2 x^{35}\binom{70+3}{70} x^{70}+x^{55}\binom{50+3}{50} x^{50}$. And so the number of solutions is $\binom{93}{90}-2\binom{73}{70}+\binom{53}{50}$.

## Another worked-out example

(You should be prepared to accept any letter as a variable name. The first example in the textbook talks about $c_{1}+c_{2}+c_{3}=12$.)

## Another worked-out example

(You should be prepared to accept any letter as a variable name. The first example in the textbook talks about $c_{1}+c_{2}+c_{3}=12$.)
(a) Find the generating function for the number of solutions of the following equation where the variables are required to be integers satisfying the stated conditions.

## Another worked-out example

(You should be prepared to accept any letter as a variable name. The first example in the textbook talks about $c_{1}+c_{2}+c_{3}=12$.)
(a) Find the generating function for the number of solutions of the following equation where the variables are required to be integers satisfying the stated conditions. Your answer should be a single fraction whose denominator is a power of $(1-x)$ and whose numerator is a sum of powers of $x$.

## Another worked-out example

(You should be prepared to accept any letter as a variable name. The first example in the textbook talks about $c_{1}+c_{2}+c_{3}=12$.)
(a) Find the generating function for the number of solutions of the following equation where the variables are required to be integers satisfying the stated conditions. Your answer should be a single fraction whose denominator is a power of $(1-x)$ and whose numerator is a sum of powers of $x$.

$$
\begin{gathered}
w_{1}+w_{2}+w_{3}=n \\
15 \leq w_{1} \\
5 \leq w_{2} \leq 14 \\
0 \leq w_{3} \leq 19
\end{gathered}
$$

## Another worked-out example

(You should be prepared to accept any letter as a variable name. The first example in the textbook talks about $c_{1}+c_{2}+c_{3}=12$.)
(a) Find the generating function for the number of solutions of the following equation where the variables are required to be integers satisfying the stated conditions. Your answer should be a single fraction whose denominator is a power of $(1-x)$ and whose numerator is a sum of powers of $x$.

$$
\begin{gathered}
w_{1}+w_{2}+w_{3}=n \\
15 \leq w_{1} \\
5 \leq w_{2} \leq 14 \\
0 \leq w_{3} \leq 19
\end{gathered}
$$

Answer: The generating function is

$$
G(x)=\frac{x^{15}}{1-x} \frac{x^{5}\left(1-x^{10}\right)}{1-x} \frac{1-x^{20}}{1-x}=\frac{x^{20}-x^{30}-x^{40}+x^{50}}{(1-x)^{3}}
$$

(b) Use this generating function to find the number of solutions when $n=88$.
(b) Use this generating function to find the number of solutions when $n=88$.
Answer: $G(x)=\left(x^{20}-x^{30}-x^{40}+x^{50}\right) \sum_{j=0}^{\infty}\binom{j+2}{j} x^{j}$
(b) Use this generating function to find the number of solutions when $n=88$.
Answer: $G(x)=\left(x^{20}-x^{30}-x^{40}+x^{50}\right) \sum_{j=0}^{\infty}\binom{j+2}{j} x^{j}$ We see that $x^{88}$ shows up in
$x^{20}\binom{70}{68} x^{68}-x^{30}\binom{60}{58} x^{58}-x^{40}\binom{50}{48} x^{48}+x^{50}\binom{40}{38} x^{38}$
(b) Use this generating function to find the number of solutions when $n=88$.
Answer: $G(x)=\left(x^{20}-x^{30}-x^{40}+x^{50}\right) \sum_{j=0}^{\infty}\binom{j+2}{j} x^{j}$ We see that $x^{88}$ shows up in
$x^{20}\binom{70}{68} x^{68}-x^{30}\binom{60}{58} x^{58}-x^{40}\binom{50}{48} x^{48}+x^{50}\binom{40}{38} x^{38}$
and so the number of solutions is $\binom{70}{68}-\binom{60}{58}-\binom{50}{48}+\binom{40}{38}$
(b) Use this generating function to find the number of solutions when $n=88$.
Answer: $G(x)=\left(x^{20}-x^{30}-x^{40}+x^{50}\right) \sum_{j=0}^{\infty}\binom{j+2}{j} x^{j}$ We see that $x^{88}$ shows up in
$x^{20}\binom{70}{68} x^{68}-x^{30}\binom{60}{58} x^{58}-x^{40}\binom{50}{48} x^{48}+x^{50}\binom{40}{38} x^{38}$
and so the number of solutions is $\binom{70}{68}-\binom{60}{58}-\binom{50}{48}+\binom{40}{38}$
Two things to remember: If the condition is $a \leq w_{j} \leq b$, the part of the generating function coming from $w_{j}$ is

$$
\begin{aligned}
x^{a}+x^{a+1}+\cdots+x^{b} & =\frac{x^{a}}{1-x}-\frac{x^{b+1}}{1-x} \\
& =\frac{x^{a}-x^{b+1}}{1-x}
\end{aligned}
$$

(b) Use this generating function to find the number of solutions when $n=88$.
Answer: $G(x)=\left(x^{20}-x^{30}-x^{40}+x^{50}\right) \sum_{j=0}^{\infty}\binom{j+2}{j} x^{j}$ We see that $x^{88}$ shows up in
$x^{20}\binom{70}{68} x^{68}-x^{30}\binom{60}{58} x^{58}-x^{40}\binom{50}{48} x^{48}+x^{50}\binom{40}{38} x^{38}$
and so the number of solutions is $\binom{70}{68}-\binom{60}{58}-\binom{50}{48}+\binom{40}{38}$
Two things to remember: If the condition is $a \leq w_{j} \leq b$, the part of the generating function coming from $w_{j}$ is

$$
\begin{aligned}
x^{a}+x^{a+1}+\cdots+x^{b} & =\frac{x^{a}}{1-x}-\frac{x^{b+1}}{1-x} \\
& =\frac{x^{a}-x^{b+1}}{1-x}
\end{aligned}
$$

Note that the first expression is the sum of all powers corresponding to allowed values of $w_{j}$. In the numerator of the last expression is the first term that appears there, minus the first missing term.

## Other kinds of conditions

Suppose the condition on a variable is " $y_{1}$ is even". Then the number of solutions of " $y_{1}=i, y_{1}$ even" is 1 if $j$ is even and 0 if $j$ is odd.

## Other kinds of conditions

Suppose the condition on a variable is " $y_{1}$ is even". Then the number of solutions of " $y_{1}=i, y_{1}$ even" is 1 if $j$ is even and 0 if $j$ is odd. So this sequence is $1,0,1,0, \ldots$ and its generating function is

$$
1+x^{2}+x^{4}+x^{6}+\cdots=1+\left(x^{2}\right)+\left(x^{2}\right)^{2}+\left(x^{2}\right)^{3}+\cdots=\frac{1}{1-x^{2}}
$$

## Other kinds of conditions

Suppose the condition on a variable is " $y_{1}$ is even". Then the number of solutions of " $y_{1}=i, y_{1}$ even" is 1 if $j$ is even and 0 if $j$ is odd. So this sequence is $1,0,1,0, \ldots$ and its generating function is

$$
1+x^{2}+x^{4}+x^{6}+\cdots=1+\left(x^{2}\right)+\left(x^{2}\right)^{2}+\left(x^{2}\right)^{3}+\cdots=\frac{1}{1-x^{2}}
$$

(Replacing the $x$ in $1+x+x^{2}+x^{3}+\cdots=1 /(1-x)$ with $\left(x^{2}\right)$.)

## Other kinds of conditions

Suppose the condition on a variable is " $y_{1}$ is even". Then the number of solutions of " $y_{1}=i, y_{1}$ even" is 1 if $j$ is even and 0 if $j$ is odd. So this sequence is $1,0,1,0, \ldots$ and its generating function is

$$
1+x^{2}+x^{4}+x^{6}+\cdots=1+\left(x^{2}\right)+\left(x^{2}\right)^{2}+\left(x^{2}\right)^{3}+\cdots=\frac{1}{1-x^{2}}
$$

(Replacing the $x$ in $1+x+x^{2}+x^{3}+\cdots=1 /(1-x)$ with $\left(x^{2}\right)$.) Similarly, the condition that $y_{2}$ is a multiple of 3 has the generating function

$$
1+x^{3}+x^{6}+x^{9}+\cdots=\frac{1}{1-x^{3}} .
$$

## Still another worked-out example

## Still another worked-out example

(a) Find the generating function for the number of solutions of the following equation where the variables $x_{j}$ are required to be integers satisfying the stated conditions.

## Still another worked-out example

(a) Find the generating function for the number of solutions of the following equation where the variables $x_{j}$ are required to be integers satisfying the stated conditions. Your answer should be a single fraction whose denominator is a power of $(1-x)$ and whose numerator is a sum of powers of $x$.

## Still another worked-out example

(a) Find the generating function for the number of solutions of the following equation where the variables $x_{j}$ are required to be integers satisfying the stated conditions. Your answer should be a single fraction whose denominator is a power of $(1-x)$ and whose numerator is a sum of powers of $x$.

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=n \\
& \quad 0 \leq x_{1} \leq 14 \\
& 14 \leq x_{2} \leq 28 \\
& \\
& 6 \leq x_{3} \\
& 0 \\
& 0 \leq x_{4} \\
& 0
\end{aligned}
$$

## Still another worked-out example

(a) Find the generating function for the number of solutions of the following equation where the variables $x_{j}$ are required to be integers satisfying the stated conditions. Your answer should be a single fraction whose denominator is a power of $(1-x)$ and whose numerator is a sum of powers of $x$.

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=n \\
& \quad 0 \leq x_{1} \leq 14 \\
& 14 \leq x_{2} \leq 28 \\
& 6 \leq x_{3} \\
& 0 \leq x_{4} \\
& 0 \leq x_{5}
\end{aligned}
$$

Answer: For $x_{1}$ we get: $1+x+x^{2}+\cdots+x^{14}=\frac{1-x^{15}}{1-x}$.

## Still another worked-out example

(a) Find the generating function for the number of solutions of the following equation where the variables $x_{j}$ are required to be integers satisfying the stated conditions. Your answer should be a single fraction whose denominator is a power of $(1-x)$ and whose numerator is a sum of powers of $x$.

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=n \\
& \quad 0 \leq x_{1} \leq 14 \\
& 14 \leq x_{2} \leq 28 \\
& \\
& 6 \leq x_{3} \\
& 0 \\
& 0 \leq x_{4} \\
& 0
\end{aligned}
$$

Answer: For $x_{1}$ we get: $1+x+x^{2}+\cdots+x^{14}=\frac{1-x^{15}}{1-x}$. For $x_{2}: \quad x^{14}+x^{15}+\cdots+x^{28}=\frac{x^{14}-x^{29}}{1-x}$.

For $x_{3}: \quad x^{6}+x^{7}+x^{8}+\cdots=\frac{x^{6}}{1-x}$.

For $x_{3}: \quad x^{6}+x^{7}+x^{8}+\cdots=\frac{x^{6}}{1-x}$.
For $x_{4}$ and $x_{5}: \quad 1+x+x^{2}+\cdots=\frac{1}{1-x}$.

For $x_{3}: \quad x^{6}+x^{7}+x^{8}+\cdots=\frac{x^{6}}{1-x}$.
For $x_{4}$ and $x_{5}: \quad 1+x+x^{2}+\cdots=\frac{1}{1-x}$.
Multiply together:

$$
G(x)=\frac{1-x^{15}}{1-x} \frac{x^{14}-x^{29}}{1-x} \frac{x^{6}}{1-x} \frac{1}{1-x} \frac{1}{1-x}=\frac{x^{20}-2 x^{35}+x^{50}}{(1-x)^{5}}
$$

(b) Use this generating function to find the number of solutions when $n=90$.

For $x_{3}: \quad x^{6}+x^{7}+x^{8}+\cdots=\frac{x^{6}}{1-x}$.
For $x_{4}$ and $x_{5}: \quad 1+x+x^{2}+\cdots=\frac{1}{1-x}$.
Multiply together:

$$
G(x)=\frac{1-x^{15}}{1-x} \frac{x^{14}-x^{29}}{1-x} \frac{x^{6}}{1-x} \frac{1}{1-x} \frac{1}{1-x}=\frac{x^{20}-2 x^{35}+x^{50}}{(1-x)^{5}}
$$

(b) Use this generating function to find the number of solutions when $n=90$.

Answer: $G(x)=\left(x^{20}-2 x^{35}+x^{50}\right) \sum_{j=0}^{\infty}\binom{j+4}{j} x^{j}$.

For $x_{3}: \quad x^{6}+x^{7}+x^{8}+\cdots=\frac{x^{6}}{1-x}$.
For $x_{4}$ and $x_{5}: \quad 1+x+x^{2}+\cdots=\frac{1}{1-x}$.
Multiply together:

$$
G(x)=\frac{1-x^{15}}{1-x} \frac{x^{14}-x^{29}}{1-x} \frac{x^{6}}{1-x} \frac{1}{1-x} \frac{1}{1-x}=\frac{x^{20}-2 x^{35}+x^{50}}{(1-x)^{5}}
$$

(b) Use this generating function to find the number of solutions when $n=90$.

Answer: $G(x)=\left(x^{20}-2 x^{35}+x^{50}\right) \sum_{j=0}^{\infty}\binom{j+4}{j} x^{j}$. We see that $x^{90}$ shows up in
$x^{20}\binom{74}{70} x^{70}-2 x^{35}\binom{59}{55} x^{55}+x^{50}\binom{44}{40} x^{40}$

For $x_{3}: \quad x^{6}+x^{7}+x^{8}+\cdots=\frac{x^{6}}{1-x}$.
For $x_{4}$ and $x_{5}: \quad 1+x+x^{2}+\cdots=\frac{1}{1-x}$.
Multiply together:

$$
G(x)=\frac{1-x^{15}}{1-x} \frac{x^{14}-x^{29}}{1-x} \frac{x^{6}}{1-x} \frac{1}{1-x} \frac{1}{1-x}=\frac{x^{20}-2 x^{35}+x^{50}}{(1-x)^{5}}
$$

(b) Use this generating function to find the number of solutions when $n=90$.
Answer: $G(x)=\left(x^{20}-2 x^{35}+x^{50}\right) \sum_{j=0}^{\infty}\binom{j+4}{j} x^{j}$. We see that $x^{90}$ shows up in
$x^{20}\binom{74}{70} x^{70}-2 x^{35}\binom{59}{55} x^{55}+x^{50}\binom{44}{40} x^{40}$
and so the number of solutions is $\binom{74}{70}-2\binom{59}{55}+\binom{44}{40}$

