Generating Functions

Daniel H. Luecking

September 13, 2023

Generating functions

We have already seen one example of generating functions: rook polynomials.

Generating functions

We have already seen one example of generating functions: rook polynomials. They are functions whose main use is to reveal the values of certain numbers. Typically they arise when some combinatorial values are obtained by adding up products of numbers in exactly the same way as products of functions behave.

Generating functions

We have already seen one example of generating functions: rook polynomials. They are functions whose main use is to reveal the values of certain numbers. Typically they arise when some combinatorial values are obtained by adding up products of numbers in exactly the same way as products of functions behave.
We will be dealing with functions that are sums of a very large number of powers of x, or even an infinite number. The applications we will put them to are based on the on the rule for multiplying sums of powers:

Generating functions

We have already seen one example of generating functions: rook polynomials. They are functions whose main use is to reveal the values of certain numbers. Typically they arise when some combinatorial values are obtained by adding up products of numbers in exactly the same way as products of functions behave.
We will be dealing with functions that are sums of a very large number of powers of x, or even an infinite number. The applications we will put them to are based on the on the rule for multiplying sums of powers:
$\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right)\left(b_{0}+b_{1} x+b_{2} x^{2}+\cdots\right)=\left(c_{0}+c_{1} x+c_{2} x^{2}+\cdots\right)$ where

$$
\begin{aligned}
& c_{0}=a_{0} b_{0} \\
& c_{1}=a_{0} b_{1}+a_{1} b_{0} \\
& c_{2}=a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0} \\
& \quad \cdots \\
& c_{n}=a_{0} b_{n}+a_{1} b_{n-1}+a_{2} b_{n-2}+\cdots+a_{n} b_{0}
\end{aligned}
$$

Or, in the \sum notation:

$$
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=\left(\sum_{n=0}^{\infty} c_{n} x^{n}\right)
$$

where

$$
c_{n}=\sum_{j=0}^{n} a_{j} b_{n-j}
$$

Or, in the \sum notation:

$$
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=\left(\sum_{n=0}^{\infty} c_{n} x^{n}\right)
$$

where

$$
c_{n}=\sum_{j=0}^{n} a_{j} b_{n-j}
$$

If the a_{j} represents the number of ways of doing something with j objects and b_{n-j} represents the number of ways of doing something with the rest of n objects, then $a_{j} b_{n-j}$ might represent the number of ways of handling all n objects using j first and then $n-j$.

Or, in the \sum notation:

$$
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=\left(\sum_{n=0}^{\infty} c_{n} x^{n}\right)
$$

where

$$
c_{n}=\sum_{j=0}^{n} a_{j} b_{n-j}
$$

If the a_{j} represents the number of ways of doing something with j objects and b_{n-j} represents the number of ways of doing something with the rest of n objects, then $a_{j} b_{n-j}$ might represent the number of ways of handling all n objects using j first and then $n-j$. And $\sum_{j=0}^{n} a_{j} b_{n-j}$ might represent all ways to handle n objects.

Or, in the \sum notation:

$$
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=\left(\sum_{n=0}^{\infty} c_{n} x^{n}\right)
$$

where

$$
c_{n}=\sum_{j=0}^{n} a_{j} b_{n-j}
$$

If the a_{j} represents the number of ways of doing something with j objects and b_{n-j} represents the number of ways of doing something with the rest of n objects, then $a_{j} b_{n-j}$ might represent the number of ways of handling all n objects using j first and then $n-j$. And $\sum_{j=0}^{n} a_{j} b_{n-j}$ might represent all ways to handle n objects.
The utility of generating functions relies on this being true in a large number of situations.

We will focus on one particular type of problem, exemplified by this example: Suppose we have an equation involving variables y_{1}, y_{2}, y_{3} which are all whole numbers and all greater than or equal to 0 :

$$
y_{1}+y_{2}+y_{3}=k
$$

We will focus on one particular type of problem, exemplified by this example: Suppose we have an equation involving variables y_{1}, y_{2}, y_{3} which are all whole numbers and all greater than or equal to 0 :

$$
y_{1}+y_{2}+y_{3}=k
$$

and subject to some conditions

1. some condition on y_{1}
2. some condition on y_{2}
3. some condition on y_{3}

We will focus on one particular type of problem, exemplified by this example: Suppose we have an equation involving variables y_{1}, y_{2}, y_{3} which are all whole numbers and all greater than or equal to 0 :

$$
y_{1}+y_{2}+y_{3}=k
$$

and subject to some conditions

1. some condition on y_{1}
2. some condition on y_{2}
3. some condition on y_{3}

For any integer $k \geq 0$ we want a way to determine the number of solutions that satisfy all the conditions. Let's call this number c_{k}.

We will focus on one particular type of problem, exemplified by this example: Suppose we have an equation involving variables y_{1}, y_{2}, y_{3} which are all whole numbers and all greater than or equal to 0 :

$$
y_{1}+y_{2}+y_{3}=k
$$

and subject to some conditions

1. some condition on y_{1}
2. some condition on y_{2}
3. some condition on y_{3}

For any integer $k \geq 0$ we want a way to determine the number of solutions that satisfy all the conditions. Let's call this number c_{k}.
Without any conditions, the answer is $c_{k}=C(k+3-1, k)$, because we can think of this as selecting k times with repetition from a set of size 3 .

We will focus on one particular type of problem, exemplified by this example: Suppose we have an equation involving variables y_{1}, y_{2}, y_{3} which are all whole numbers and all greater than or equal to 0 :

$$
y_{1}+y_{2}+y_{3}=k
$$

and subject to some conditions

1. some condition on y_{1}
2. some condition on y_{2}
3. some condition on y_{3}

For any integer $k \geq 0$ we want a way to determine the number of solutions that satisfy all the conditions. Let's call this number c_{k}.
Without any conditions, the answer is $c_{k}=C(k+3-1, k)$, because we can think of this as selecting k times with repetition from a set of size 3 . Any solution corresponds to a selection that picks the first element of the set y_{1} times, the second y_{2} times and the third y_{3} times.

One way to attack it is to break it into two equations: $y_{1}=i \quad$ with the first condition, $y_{2}+y_{3}=j$ with the other 2 conditions. with $i+j=k$.

One way to attack it is to break it into two equations:

$$
\begin{aligned}
& y_{1}=i \quad \text { with the first condition, } \\
& y_{2}+y_{3}=j \text { with the other } 2 \text { conditions. }
\end{aligned}
$$

with $i+j=k$.
If the first of these has a_{i} solutions and the second has b_{j} solutions, then the original problem has c_{k} solutions with $c_{k}=a_{0} b_{k}+a_{1} b_{k-1}+a_{2} b_{k-2}+\cdots+a_{k} b_{0}$.

One way to attack it is to break it into two equations:

$$
\begin{aligned}
& y_{1}=i \quad \text { with the first condition, } \\
& y_{2}+y_{3}=j \text { with the other } 2 \text { conditions. }
\end{aligned}
$$

with $i+j=k$.
If the first of these has a_{i} solutions and the second has b_{j} solutions, then the original problem has c_{k} solutions with
$c_{k}=a_{0} b_{k}+a_{1} b_{k-1}+a_{2} b_{k-2}+\cdots+a_{k} b_{0}$.
Typically we find $F_{1}(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$ and put it in some simple form, then do the same for $F_{2}(x)=\sum_{j=0}^{\infty} b_{j} x^{j}$.

One way to attack it is to break it into two equations:

$$
\begin{aligned}
y_{1} & =i \quad \text { with the first condition, } \\
y_{2}+y_{3} & =j \quad \text { with the other } 2 \text { conditions. }
\end{aligned}
$$

with $i+j=k$.
If the first of these has a_{i} solutions and the second has b_{j} solutions, then the original problem has c_{k} solutions with
$c_{k}=a_{0} b_{k}+a_{1} b_{k-1}+a_{2} b_{k-2}+\cdots+a_{k} b_{0}$.
Typically we find $F_{1}(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$ and put it in some simple form, then do the same for $F_{2}(x)=\sum_{j=0}^{\infty} b_{j} x^{j}$. Then we get $G(x)=F_{1}(x) F_{2}(x)$ and try to find the c_{k} satisfying $G(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ without actually having to compute all the $a_{i} b_{k-i}$ and adding them up.

One way to attack it is to break it into two equations:

$$
\begin{aligned}
y_{1} & =i \quad \text { with the first condition, } \\
y_{2}+y_{3} & =j \quad \text { with the other } 2 \text { conditions. }
\end{aligned}
$$

with $i+j=k$.
If the first of these has a_{i} solutions and the second has b_{j} solutions, then the original problem has c_{k} solutions with
$c_{k}=a_{0} b_{k}+a_{1} b_{k-1}+a_{2} b_{k-2}+\cdots+a_{k} b_{0}$.
Typically we find $F_{1}(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$ and put it in some simple form, then do the same for $F_{2}(x)=\sum_{j=0}^{\infty} b_{j} x^{j}$. Then we get $G(x)=F_{1}(x) F_{2}(x)$ and try to find the c_{k} satisfying $G(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ without actually having to compute all the $a_{i} b_{k-i}$ and adding them up.
For example. if there are no conditions imposed, then $y_{1}=i$ has one solution for any i. That is $a_{i}=1$.

One way to attack it is to break it into two equations:

$$
\begin{aligned}
y_{1} & =i \quad \text { with the first condition, } \\
y_{2}+y_{3} & =j \quad \text { with the other } 2 \text { conditions. }
\end{aligned}
$$

with $i+j=k$.
If the first of these has a_{i} solutions and the second has b_{j} solutions, then the original problem has c_{k} solutions with
$c_{k}=a_{0} b_{k}+a_{1} b_{k-1}+a_{2} b_{k-2}+\cdots+a_{k} b_{0}$.
Typically we find $F_{1}(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$ and put it in some simple form, then do the same for $F_{2}(x)=\sum_{j=0}^{\infty} b_{j} x^{j}$. Then we get $G(x)=F_{1}(x) F_{2}(x)$ and try to find the c_{k} satisfying $G(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ without actually having to compute all the $a_{i} b_{k-i}$ and adding them up.
For example. if there are no conditions imposed, then $y_{1}=i$ has one solution for any i. That is $a_{i}=1$.
Then $F_{1}(x)=1+x+x^{2}+x^{3}+\cdots=1 /(1-x)$.

One way to attack it is to break it into two equations:
$y_{1}=i \quad$ with the first condition, $y_{2}+y_{3}=j$ with the other 2 conditions.
with $i+j=k$.
If the first of these has a_{i} solutions and the second has b_{j} solutions, then the original problem has c_{k} solutions with
$c_{k}=a_{0} b_{k}+a_{1} b_{k-1}+a_{2} b_{k-2}+\cdots+a_{k} b_{0}$.
Typically we find $F_{1}(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$ and put it in some simple form, then do the same for $F_{2}(x)=\sum_{j=0}^{\infty} b_{j} x^{j}$. Then we get $G(x)=F_{1}(x) F_{2}(x)$ and try to find the c_{k} satisfying $G(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ without actually having to compute all the $a_{i} b_{k-i}$ and adding them up.
For example. if there are no conditions imposed, then $y_{1}=i$ has one solution for any i. That is $a_{i}=1$.
Then $F_{1}(x)=1+x+x^{2}+x^{3}+\cdots=1 /(1-x)$.
It turns out that $b_{j}=j+1$ and $F_{2}(x)=1+2 x+3 x^{2}+\cdots=1 /(1-x)^{2}$.

Then $F_{1}(x) F_{2}(x)=1 /(1-x)^{3}$.

Then $F_{1}(x) F_{2}(x)=1 /(1-x)^{3}$. Finally we will have a formula that shows that

$$
\frac{1}{(1-x)^{3}}=\sum_{k=0}^{\infty}\binom{k+2}{k} x^{k}
$$

From which we conclude $c_{k}=\binom{k+2}{k}$. This is the formula we had previously: $C(k+3-1, k)$.

From which we conclude $c_{k}=\binom{k+2}{k}$. This is the formula we had previously: $C(k+3-1, k)$.
We can take this one step further: Divide the equation $y_{2}+y_{3}=j$ into two equations

$$
\begin{array}{ll}
y_{2}=p & \text { with the condition on } y_{2} \\
y_{3}=q & \text { with the condition on } y_{3}
\end{array}
$$

with $p+q=j$. Then, in the case where there are no conditions, a similar analysis will give $1 /(1-x)$ for the first equation and $1 /(1-x)$ for the second equation, leading to $F_{2}(x)=1 /(1-x)^{2}$.

So, the process is:
Break down a problem into simpler parts.

So, the process is:
Break down a problem into simpler parts.
Then for the first part, get the appropriate sequence of numbers: $a_{0}, a_{1}, a_{2}, \ldots$

So, the process is:
Break down a problem into simpler parts.
Then for the first part, get the appropriate sequence of numbers:
$a_{0}, a_{1}, a_{2}, \ldots$.
Then get the generating function for that sequence:

$$
F_{1}(x)=\sum_{j=0}^{\infty} a_{j} x^{j}
$$

preferably in a simple, compact form.

So, the process is:
Break down a problem into simpler parts.
Then for the first part, get the appropriate sequence of numbers:
$a_{0}, a_{1}, a_{2}, \ldots$
Then get the generating function for that sequence:

$$
F_{1}(x)=\sum_{j=0}^{\infty} a_{j} x^{j}
$$

preferably in a simple, compact form.
Do the same for the second, third, etc., parts getting $F_{2}(x), F_{3}(x)$, etc.

So, the process is:
Break down a problem into simpler parts.
Then for the first part, get the appropriate sequence of numbers:
$a_{0}, a_{1}, a_{2}, \ldots$
Then get the generating function for that sequence:

$$
F_{1}(x)=\sum_{j=0}^{\infty} a_{j} x^{j}
$$

preferably in a simple, compact form.
Do the same for the second, third, etc., parts getting $F_{2}(x), F_{3}(x)$, etc. For the right kind of problem the numbers associated with the whole problem will have the generating function $G(x)=F_{1}(x) F_{2}(x) F_{3}(x) \cdots$.

So, the process is:
Break down a problem into simpler parts.
Then for the first part, get the appropriate sequence of numbers:
$a_{0}, a_{1}, a_{2}, \ldots$
Then get the generating function for that sequence:

$$
F_{1}(x)=\sum_{j=0}^{\infty} a_{j} x^{j}
$$

preferably in a simple, compact form.
Do the same for the second, third, etc., parts getting $F_{2}(x), F_{3}(x)$, etc. For the right kind of problem the numbers associated with the whole problem will have the generating function $G(x)=F_{1}(x) F_{2}(x) F_{3}(x) \cdots$. Finally, analyse $G(x)$ and discover the desired numbers.

For the process to work, we need a repertoire of formulas for various sequences and their generating functions. Here are some of the most important from the textbook, page 424.
(1) $(1+x)^{n}=\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\cdots+\binom{n}{n} x^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{j}$
(2) $\frac{1-x^{n+1}}{1-x}=1+x+x^{2}+\cdots+x^{n}=\sum_{j=0}^{n} x^{j}$
(3) $\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots=\sum_{j=0}^{\infty} x^{j}$
(4) $\frac{1}{(1-x)^{n}}=1+n x+\binom{n+1}{2} x^{2}+\binom{n+2}{3} x^{3}+\cdots=\sum_{j=0}^{\infty}\binom{n+j-1}{j} x^{j}$

For the process to work, we need a repertoire of formulas for various sequences and their generating functions. Here are some of the most important from the textbook, page 424.
(1) $(1+x)^{n}=\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\cdots+\binom{n}{n} x^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{j}$
(2) $\frac{1-x^{n+1}}{1-x}=1+x+x^{2}+\cdots+x^{n}=\sum_{j=0}^{n} x^{j}$
(3)

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots=\sum_{j=0}^{\infty} x^{j}
$$

(4) $\frac{1}{(1-x)^{n}}=1+n x+\binom{n+1}{2} x^{2}+\binom{n+2}{3} x^{3}+\cdots=\sum_{j=0}^{\infty}\binom{n+j-1}{j} x^{j}$

The rest of the formulas in the textbook can be obtained by substitution. For example, replacing x by ($a x$) in (3) gives
(5)

$$
\frac{1}{1-a x}=1+a x+(a x)^{2}+(a x)^{3}+\cdots=\sum_{j=1}^{\infty} a^{j} x^{j}
$$

The equation (1) tells us that the generating function of the sequence $\binom{n}{0},\binom{n}{1},\binom{n}{2}, \ldots,\binom{n}{n}, 0,0, \ldots$ is $(1+x)^{n}$.

The equation (1) tells us that the generating function of the sequence $\binom{n}{0},\binom{n}{1},\binom{n}{2}, \ldots,\binom{n}{n}, 0,0, \ldots$ is $(1+x)^{n}$.
The equation (3) tells us that the generating function of the sequence $1,1,1,1, \ldots$ is $1 /(1-x)$.

The equation (1) tells us that the generating function of the sequence $\binom{n}{0},\binom{n}{1},\binom{n}{2}, \ldots,\binom{n}{n}, 0,0, \ldots$ is $(1+x)^{n}$.
The equation (3) tells us that the generating function of the sequence $1,1,1,1, \ldots$ is $1 /(1-x)$. And equation (5) tells us that the generating function of the sequence $1, a, a^{2}, a^{3}, \ldots$ is $1 /(1-a x)$.

The equation (1) tells us that the generating function of the sequence $\binom{n}{0},\binom{n}{1},\binom{n}{2}, \ldots,\binom{n}{n}, 0,0, \ldots$ is $(1+x)^{n}$.
The equation (3) tells us that the generating function of the sequence $1,1,1,1, \ldots$ is $1 /(1-x)$. And equation (5) tells us that the generating function of the sequence $1, a, a^{2}, a^{3}, \ldots$ is $1 /(1-a x)$.
While these formulas may seem to have come out of thin air, they can actually be derived in relatively simple ways.

The equation (1) tells us that the generating function of the sequence $\binom{n}{0},\binom{n}{1},\binom{n}{2}, \ldots,\binom{n}{n}, 0,0, \ldots$ is $(1+x)^{n}$.
The equation (3) tells us that the generating function of the sequence $1,1,1,1, \ldots$ is $1 /(1-x)$. And equation (5) tells us that the generating function of the sequence $1, a, a^{2}, a^{3}, \ldots$ is $1 /(1-a x)$.
While these formulas may seem to have come out of thin air, they can actually be derived in relatively simple ways.
The first equation is just the binomial theorem:

$$
(x+y)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{j} y^{n-j}
$$

with y set equal to 1 .

To see where (2) comes from:

Let
multiply

$$
G(x)=1+x+x^{2}+x^{3}+\cdots+x^{n}
$$

$$
x G(x)=\quad x+x^{2}+x^{3}+\cdots+x^{n}+x^{n+1}
$$

subtract

$$
(1-x) G(x)=1-x^{n+1}
$$

$$
G(x)=\frac{1-x^{n+1}}{1-x}
$$

To see where (2) comes from:
Let

$$
G(x)=1+x+x^{2}+x^{3}+\cdots+x^{n}
$$

multiply

$$
x G(x)=\quad x+x^{2}+x^{3}+\cdots+x^{n}+x^{n+1}
$$

subtract

$$
(1-x) G(x)=1-x^{n+1}
$$

$$
G(x)=\frac{1-x^{n+1}}{1-x}
$$

Equation (3) comes about the same way:
Let

$$
F(x)=1+x+x^{2}+x^{3}+\cdots
$$

multiply

$$
x F(x)=\quad x+x^{2}+x^{3}+\cdots
$$

subtract

$$
(1-x) F(x)=1
$$

divide

$$
F(x)=\frac{1}{1-x}
$$

