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Generating functions

We have already seen one example of generating functions: rook
polynomials.

They are functions whose main use is to reveal the values of
certain numbers. Typically they arise when some combinatorial values are
obtained by adding up products of numbers in exactly the same way as
products of functions behave.

We will be dealing with functions that are sums of a very large number of
powers of x, or even an infinite number. The applications we will put them
to are based on the on the rule for multiplying sums of powers:
(a0 + a1x+ a2x

2 + · · · )(b0 + b1x+ b2x
2 + · · · ) = (c0 + c1x+ c2x

2 + · · · )
where

c0 = a0b0

c1 = a0b1 + a1b0

c2 = a0b2 + a1b1 + a2b0
. . .

cn = a0bn + a1bn−1 + a2bn−2 + · · ·+ anb0
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Or, in the
∑

notation:( ∞∑
n=0

anx
n

)( ∞∑
n=0

bnx
n

)
=

( ∞∑
n=0

cnx
n

)
where

cn =

n∑
j=0

ajbn−j

If the aj represents the number of ways of doing something with j objects
and bn−j represents the number of ways of doing something with the rest
of n objects, then ajbn−j might represent the number of ways of handling
all n objects using j first and then n− j. And

∑n
j=0 ajbn−j might

represent all ways to handle n objects.

The utility of generating functions relies on this being true in a large
number of situations.
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We will focus on one particular type of problem, exemplified by this
example: Suppose we have an equation involving variables y1, y2, y3 which
are all whole numbers and all greater than or equal to 0:

y1 + y2 + y3 = k

and subject to some conditions

1. some condition on y1

2. some condition on y2

3. some condition on y3

For any integer k ≥ 0 we want a way to determine the number of solutions
that satisfy all the conditions. Let’s call this number ck.

Without any conditions, the answer is ck = C(k + 3− 1, k), because we
can think of this as selecting k times with repetition from a set of size 3.
Any solution corresponds to a selection that picks the first element of the
set y1 times, the second y2 times and the third y3 times.
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One way to attack it is to break it into two equations:
y1 = i with the first condition,

y2 + y3 = j with the other 2 conditions.
with i+ j = k.

If the first of these has ai solutions and the second has bj solutions, then
the original problem has ck solutions with
ck = a0bk + a1bk−1 + a2bk−2 + · · ·+ akb0.

Typically we find F1(x) =
∑∞

i=0 aix
i and put it in some simple form, then

do the same for F2(x) =
∑∞

j=0 bjx
j . Then we get G(x) = F1(x)F2(x)

and try to find the ck satisfying G(x) =
∑∞

k=0 ckx
k without actually

having to compute all the aibk−i and adding them up.

For example. if there are no conditions imposed, then y1 = i has one
solution for any i. That is ai = 1.
Then F1(x) = 1 + x+ x2 + x3 + · · · = 1/(1− x).
It turns out that bj = j + 1 and F2(x) = 1 + 2x+ 3x2 + · · · = 1/(1− x)2.

5 / 11



One way to attack it is to break it into two equations:
y1 = i with the first condition,

y2 + y3 = j with the other 2 conditions.
with i+ j = k.

If the first of these has ai solutions and the second has bj solutions, then
the original problem has ck solutions with
ck = a0bk + a1bk−1 + a2bk−2 + · · ·+ akb0.

Typically we find F1(x) =
∑∞

i=0 aix
i and put it in some simple form, then

do the same for F2(x) =
∑∞

j=0 bjx
j . Then we get G(x) = F1(x)F2(x)

and try to find the ck satisfying G(x) =
∑∞

k=0 ckx
k without actually

having to compute all the aibk−i and adding them up.

For example. if there are no conditions imposed, then y1 = i has one
solution for any i. That is ai = 1.
Then F1(x) = 1 + x+ x2 + x3 + · · · = 1/(1− x).
It turns out that bj = j + 1 and F2(x) = 1 + 2x+ 3x2 + · · · = 1/(1− x)2.

5 / 11



One way to attack it is to break it into two equations:
y1 = i with the first condition,

y2 + y3 = j with the other 2 conditions.
with i+ j = k.

If the first of these has ai solutions and the second has bj solutions, then
the original problem has ck solutions with
ck = a0bk + a1bk−1 + a2bk−2 + · · ·+ akb0.

Typically we find F1(x) =
∑∞

i=0 aix
i and put it in some simple form, then

do the same for F2(x) =
∑∞

j=0 bjx
j .

Then we get G(x) = F1(x)F2(x)

and try to find the ck satisfying G(x) =
∑∞

k=0 ckx
k without actually

having to compute all the aibk−i and adding them up.

For example. if there are no conditions imposed, then y1 = i has one
solution for any i. That is ai = 1.
Then F1(x) = 1 + x+ x2 + x3 + · · · = 1/(1− x).
It turns out that bj = j + 1 and F2(x) = 1 + 2x+ 3x2 + · · · = 1/(1− x)2.

5 / 11



One way to attack it is to break it into two equations:
y1 = i with the first condition,

y2 + y3 = j with the other 2 conditions.
with i+ j = k.

If the first of these has ai solutions and the second has bj solutions, then
the original problem has ck solutions with
ck = a0bk + a1bk−1 + a2bk−2 + · · ·+ akb0.

Typically we find F1(x) =
∑∞

i=0 aix
i and put it in some simple form, then

do the same for F2(x) =
∑∞

j=0 bjx
j . Then we get G(x) = F1(x)F2(x)

and try to find the ck satisfying G(x) =
∑∞

k=0 ckx
k without actually

having to compute all the aibk−i and adding them up.

For example. if there are no conditions imposed, then y1 = i has one
solution for any i. That is ai = 1.
Then F1(x) = 1 + x+ x2 + x3 + · · · = 1/(1− x).
It turns out that bj = j + 1 and F2(x) = 1 + 2x+ 3x2 + · · · = 1/(1− x)2.

5 / 11



One way to attack it is to break it into two equations:
y1 = i with the first condition,

y2 + y3 = j with the other 2 conditions.
with i+ j = k.

If the first of these has ai solutions and the second has bj solutions, then
the original problem has ck solutions with
ck = a0bk + a1bk−1 + a2bk−2 + · · ·+ akb0.

Typically we find F1(x) =
∑∞

i=0 aix
i and put it in some simple form, then

do the same for F2(x) =
∑∞

j=0 bjx
j . Then we get G(x) = F1(x)F2(x)

and try to find the ck satisfying G(x) =
∑∞

k=0 ckx
k without actually

having to compute all the aibk−i and adding them up.

For example. if there are no conditions imposed, then y1 = i has one
solution for any i. That is ai = 1.

Then F1(x) = 1 + x+ x2 + x3 + · · · = 1/(1− x).
It turns out that bj = j + 1 and F2(x) = 1 + 2x+ 3x2 + · · · = 1/(1− x)2.

5 / 11



One way to attack it is to break it into two equations:
y1 = i with the first condition,

y2 + y3 = j with the other 2 conditions.
with i+ j = k.

If the first of these has ai solutions and the second has bj solutions, then
the original problem has ck solutions with
ck = a0bk + a1bk−1 + a2bk−2 + · · ·+ akb0.

Typically we find F1(x) =
∑∞

i=0 aix
i and put it in some simple form, then

do the same for F2(x) =
∑∞

j=0 bjx
j . Then we get G(x) = F1(x)F2(x)

and try to find the ck satisfying G(x) =
∑∞

k=0 ckx
k without actually

having to compute all the aibk−i and adding them up.

For example. if there are no conditions imposed, then y1 = i has one
solution for any i. That is ai = 1.
Then F1(x) = 1 + x+ x2 + x3 + · · · = 1/(1− x).

It turns out that bj = j + 1 and F2(x) = 1 + 2x+ 3x2 + · · · = 1/(1− x)2.

5 / 11



One way to attack it is to break it into two equations:
y1 = i with the first condition,

y2 + y3 = j with the other 2 conditions.
with i+ j = k.

If the first of these has ai solutions and the second has bj solutions, then
the original problem has ck solutions with
ck = a0bk + a1bk−1 + a2bk−2 + · · ·+ akb0.

Typically we find F1(x) =
∑∞

i=0 aix
i and put it in some simple form, then

do the same for F2(x) =
∑∞

j=0 bjx
j . Then we get G(x) = F1(x)F2(x)

and try to find the ck satisfying G(x) =
∑∞

k=0 ckx
k without actually

having to compute all the aibk−i and adding them up.

For example. if there are no conditions imposed, then y1 = i has one
solution for any i. That is ai = 1.
Then F1(x) = 1 + x+ x2 + x3 + · · · = 1/(1− x).
It turns out that bj = j + 1 and F2(x) = 1 + 2x+ 3x2 + · · · = 1/(1− x)2.

5 / 11



Then F1(x)F2(x) = 1/(1− x)3.

Finally we will have a formula that shows
that

1

(1− x)3
=

∞∑
k=0

(
k + 2

k

)
xk

6 / 11



Then F1(x)F2(x) = 1/(1− x)3. Finally we will have a formula that shows
that

1

(1− x)3
=

∞∑
k=0

(
k + 2

k

)
xk

6 / 11



From which we conclude ck =
(
k+2
k

)
. This is the formula we had

previously: C(k + 3− 1, k).

We can take this one step further: Divide the equation y2 + y3 = j into
two equations

y2 = p with the condition on y2

y3 = q with the condition on y3
with p+ q = j. Then, in the case where there are no conditions, a similar
analysis will give 1/(1− x) for the first equation and 1/(1− x) for the
second equation, leading to F2(x) = 1/(1− x)2.
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So, the process is:
Break down a problem into simpler parts.

Then for the first part, get the appropriate sequence of numbers:
a0, a1, a2, . . . .
Then get the generating function for that sequence:

F1(x) =

∞∑
j=0

ajx
j

preferably in a simple, compact form.
Do the same for the second, third, etc., parts getting F2(x), F3(x), etc.
For the right kind of problem the numbers associated with the whole
problem will have the generating function G(x) = F1(x)F2(x)F3(x) · · · .
Finally, analyse G(x) and discover the desired numbers.
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For the process to work, we need a repertoire of formulas for various
sequences and their generating functions. Here are some of the most
important from the textbook, page 424.

(1) (1 + x)n =
(
n
0

)
+
(
n
1

)
x+

(
n
2

)
x2 + · · ·+

(
n
n

)
xn =

n∑
j=0

(
n
j

)
xj

(2)
1− xn+1

1− x
= 1 + x+ x2 + · · ·+ xn =

n∑
j=0

xj

(3)
1

1− x
= 1 + x+ x2 + x3 + · · · =

∞∑
j=0

xj

(4)
1

(1− x)n
= 1 + nx+

(
n+1
2

)
x2 +

(
n+2
3

)
x3 + · · · =

∞∑
j=0

(
n+j−1

j

)
xj

The rest of the formulas in the textbook can be obtained by substitution.
For example, replacing x by (ax) in (3) gives

(5)
1

1− ax
= 1 + ax+ (ax)2 + (ax)3 + · · · =

∞∑
j=1

ajxj
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The equation (1) tells us that the generating function of the sequence(
n
0

)
,
(
n
1

)
,
(
n
2

)
, . . . ,

(
n
n

)
, 0, 0, . . . is (1 + x)n.

The equation (3) tells us that the generating function of the sequence
1, 1, 1, 1, . . . is 1/(1− x). And equation (5) tells us that the generating
function of the sequence 1, a, a2, a3, . . . is 1/(1− ax).

While these formulas may seem to have come out of thin air, they can
actually be derived in relatively simple ways.

The first equation is just the binomial theorem:

(x+ y)n =
n∑

j=0

(
n

j

)
xjyn−j

with y set equal to 1.
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To see where (2) comes from:
Let G(x) = 1 + x+ x2 + x3 + · · ·+ xn

multiply xG(x) = x+ x2 + x3 + · · ·+ xn + xn+1

subtract (1− x)G(x) = 1− xn+1

divide G(x) =
1− xn+1

1− x

Equation (3) comes about the same way:
Let F (x) = 1 + x+ x2 + x3 + · · ·
multiply xF (x) = x+ x2 + x3 + · · ·
subtract (1− x)F (x) = 1

divide F (x) =
1

1− x
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