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Inclusion-Exclusion

For m conditions c1, c2, . . . , cm, we let N be the number of object to
which these conditions apply, and we define S1 through Sm by

1. S1 = N(c1) +N(c2) +N(c3) + · · ·+N(cm).

2. S2 = N(c1c2) +N(c1c3) +N(c2c3) + · · ·+N(cm−1cm).

3. S3 = N(c1c2c3) + · · ·+N(cm−2cm−1cm).
. . .

4. Sm = N(c1c2 . . . cm). This is the only combination of all m
conditions.

In some cases all the numbers in a sum are the same, so it is useful to
know that S1 has m terms, S2 has C(m, 2) terms. In general any Sk has
C(m, k) terms.

The formula for the number that satisfy at least one condition is

S1 − S2 + S3 − · · · ± Sm

and the number that satisfy none of the conditions is

N − S1 + S2 − S3 + · · · ∓ Sm
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Expanding the concept

There are other questions that one might ask besides how many satisfy no
conditions or how many satisfy at least one.

Here are some that we can
find formulas for.

• Lk is the number of objects that satisfy at least k of the conditions.

• Ek is the number that satisfy exactly k of the conditions

We already know two of these

L1 = S1 − S2 + S3 − · · · ± Sm

E0 = N − S1 + S2 − S3 + · · · ∓ Sm

Another easy one is L0 = N . We also have
Em = Lm = Sm = N(c1c2 . . . cm) and if k < m, Ek = Lk − Lk+1.
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To illustrate some of the issues involved, if there are 3 conditions we have

E1 = N(c1c2c3) +N(c1c2c3) +N(c1c2c3)

If we examine the first term N(c1c2c3) we can view this number as asking:
Among the set where c1 is satisfied, how many satisfy none of the other
conditions? That is, the containing set has N(c1) elements and we have 2
conditions c2 and c3. Using the rule of sum for two sets we get

N(c1c2c3) = N(c1)−N(c1c2)−N(c1c3) +N(c1c2c3)

A similar formula can be found for the other 2 terms in E1 and when we
add them we get

E1 = S1 − 2S2 + 3S3

This extends to any number of conditions

E1 = S1 − 2S2 + 3S3 − 4S4 + · · · ±mSm
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Formulas for the others

If there are m conditions and 0 ≤ k ≤ m then

Ek = Sk −
(
k + 1

1

)
Sk+1 +

(
k + 2

2

)
Sk+2 − · · · ±

(
m

m− k

)
Sm

= Sk −
(
k + 1

k

)
Sk+1 +

(
k + 2

k

)
Sk+2 − · · · ±

(
m

k

)
Sm

(for k = 0, S0 = N) and

Lk = Sk −
(
k

1

)
Sk+1 +

(
k + 1

2

)
Sk+2 − · · · ±

(
m− 1

m− k

)
Sm

= Sk −
(

k

k − 1

)
Sk+1 +

(
k + 1

k − 1

)
Sk+2 − · · · ±

(
m− 1

k − 1

)
Sm

For example, with 3 conditions E2 = S2 − 3S3 and L2 = S2 − 2S3
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c1 c2

c3

I

II

III

IV

With 3 conditions E2 = S2 − 3S3 and L2 = S2 − 2S3
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Examples

Problem: (a) How many permutations of "MODERNIST" contain exactly
one of the substrings "DO", "RE" or "MI"?

(b) How many contain exactly
2? (c) How many contain at least 2?

Solution: As before we let c1 = ‘contains "DO"’ c2 = ‘contains "RE"’
c3 = ‘contains "MI"’. Again N(c1) = N(c2) = N(c3) = 8! so S1 = 3 · 8!,
and N(c1c2) = N(c1c3) = N(c2c3) = 7! so S2 = 3 · 7!, and
S3 = N(c1c2c3) = 6!. Then

(a) E1 = S1 − 2S2 + 3S3 = 3 · 8!− 2 · 3 · 7! + 3 · 6! = 92,880.

(b) E2 = S2 − 3S3 = 3 · 7!− 3 · 6! = 12,960.

(c) L2 = S2 − 2S3 = 3 · 7!− 2 · 6! = 13,680.
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Going back to the math majors and their classes, where we had S1 = 105,
S2 = 35 and S3 = 5, we can ask the same three questions:

(a) How many math major were taking exactly 1 of the 3 classes?
E1 = S1 − 2S2 + 3S3 = 105− 2(35) + 3(5) = 50

(b) How many math major were taking exactly 2 of the 3 classes?
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(c) How many math major were taking at least 2 of the 3 classes?
L2 = S2 − 2S3 = 35− 2(5) = 25
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Returning to the arrangements of "BOOKBINDING" with conditions
c1 = ‘contains "BB"’, c2 = ‘contains "OO"’, c3 = ‘contains "II"’, and

c4 = ‘contains "NN"’.

We obtained S1 = 4
10!

2!2!2!
, S2 = 6

9!

2!2!
, S3 = 4

8!

2!
,

and S4 = 7!. Then

(a) How many contain exactly 2 of those substrings? Looking up

E2 = S2 −
(
3
1

)
S3 +

(
4
2

)
S4 = S2 − 3S3 + 6S4 = 6

9!

2!2!
− 3 · 4 8!

2!
+ 6 · 7!

(b) How many contain exactly 3 of those substrings? Looking up

E3 = S3 −
(
4
1

)
S4 = S3 − 4S4 = 4

8!

2!
− 4 · 7!

(c) At least 2: L2 = S2 −
(
2
1

)
S3 +

(
3
2

)
S4 = 6

9!

2!2!
− 2 · 4 8!

2!
+ 3 · 7!

(d) At least 3: L3 = S3 −
(
3
1

)
S4 = 4

8!

2!
− 3 · 7!
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Arrangements of the string "VETERINARIAN" with 5 conditions about
containing substrings "EE", "RR", "II", "NN", "AA".

We found previously that S1 = 5
11!

2!2!2!2!
, S2 = 10

10!

2!2!2!
, S3 = 10

9!

2!2!
,

S4 = 5
8!

2!
, and S5 = 7!.

(a) How many contain exactly 2 of those substrings? Looking up
E2 = S2 −

(
3
1

)
S3 +

(
4
2

)
S4 −

(
5
3

)
S5 = S2 − 3S3 + 6S4 − 10S5 =

10
10!

2!2!2!
− 3 · 10 9!

2!2!
+ 6 · 58!

2!
− 10 · 7!.

(c) At least 3?

L3 = S3 −
(
3
1

)
S4 +

(
4
2

)
S5 = S3 − 3S4 + 6S5 = 10

9!

2!2!
− 3 · 58!

2!
+ 6 · 7!
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Derangements

When permuting the elements of a set, the set itself usually has no order
to it.

But we can often start with some special permutation, and ask how
other permutations differ from it.

Example: How many permutations of the letters of the alphabet have
every letter in a position other than its alphabetical order? That is, ’A’ is
not in first position, ’B’ is not in second position, etc.

Here we are starting with all the letters in alphabetical order and ask how
many permutations differ from it in every position.

If we have a given permutation of all the elements of a set, then the
permutations that are different from it in every position are called
derangements of that permutation.
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Another way to look at permutations is as one-to-one functions.

Then
another way to define a derangement is to start with two equal-sized sets
A and B and a given one-to-one function f from A to B. A derangement
of f is another one-to-one function that has a different value from f at
every element of A.

The classic example in derangements is part of a probability problem.

Suppose 15 men enter a club at one time and check their hats. The
hat-check person just tosses the hats in a pile and when the 15 men leave,
they are handed back their hats at random. What is the probability that
none of the men gets his own hat?

If A is the set of men and B is the set of hats we have the original
function assigning to each man his own hat. Afterwards we have the new
function that assigns to each man the hat he is handed. To compute the
probability we need to divide the number of derangements by the number
of all one-to-one functions.
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We attack the problem with inclusion exclusion. Let’s number the men
from 1 to 15 and let cj = ‘man number j gets his own hat’. Note that N
is the total number of permutations so N = 15!.

Then a derangement is a permutation (i.e., an assignment of hats to men)
that satisfies none of these conditions.

We can compute N(cj) as follows: it is the number of permutations where
man j gets his own hat. By the rule of product this is 14! because we can
build such a permutation in 2 steps:
1. give man j his hat: there is only one way to do this.
2. form a permutation of the rest of the hats: there are 14! ways to do
this.

Since we get the same number 14! for every N(cj), we get the sum
S1 = 15 · 14! = 15!.

By a similar argument, for any two conditions N(cjck) = 13!. If we take
the sum of all these (there are C(15, 2) terms) we get

S2 =
(
15
2

)
13! =

15!

2!13!
13! =

15!

2!
.
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Then S3 is a sum of C(15, 3) terms each equal to 12! so S3 =
15!

3!
.

The formula for each: Sk =
15!

k!
and so the number of derangements is

N(c1c2 . . . c15) = N − S1 + S2 − S3 + S4 − · · · − S15

= 15!− 15! +
15!

2!
− 15!

3!
+

15!

4!
− · · · − 15!

15!

= 15!

(
1

2!
− 1

3!
+

1

4!
− · · · − 1

15!

)

So the probability of a derangement is
1

2!
− 1

3!
+ · · · − 1

15!
which is

approximately 0.36788.

The general formula for the number of derangements of a permutation
with length n is

dn =
n!

2!
− n!

3!
+

n!

4!
− · · · ± n!

n!
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