Some Basic Principles of
Combinatorics

Daniel H. Luecking

August 21, 2023

1/1

The science of counting

Don't we already know how to count?

2/1

The science of counting
Don't we already know how to count?

Yes, we can all point to the objects we are counting, saying “1, 2, 3,...".

But imagine counting 11,881,376 things this way: it could take most of a
year.

2/1

The science of counting
Don't we already know how to count?

Yes, we can all point to the objects we are counting, saying “1, 2, 3,...".
But imagine counting 11,881,376 things this way: it could take most of a
year. An example of this many things we might want to count is the
collection of all possible 5-letter strings.

2/1

The science of counting
Don't we already know how to count?

Yes, we can all point to the objects we are counting, saying “1, 2, 3,...".
But imagine counting 11,881,376 things this way: it could take most of a
year. An example of this many things we might want to count is the
collection of all possible 5-letter strings. But | got that number without
counting anything.

2/1

The science of counting
Don't we already know how to count?

Yes, we can all point to the objects we are counting, saying “1, 2, 3,...".
But imagine counting 11,881,376 things this way: it could take most of a
year. An example of this many things we might want to count is the
collection of all possible 5-letter strings. But | got that number without
counting anything.

To actually count them one by one, we would need to have a list of them.
So we might ask a computer to generated that list. . ..

2/1

The science of counting
Don't we already know how to count?

Yes, we can all point to the objects we are counting, saying “1, 2, 3,...".
But imagine counting 11,881,376 things this way: it could take most of a
year. An example of this many things we might want to count is the
collection of all possible 5-letter strings. But | got that number without
counting anything.

To actually count them one by one, we would need to have a list of them.
So we might ask a computer to generated that list.... But we might as
well ask it to count them for us. This would take a fraction of a second
(plus the time it took us to write the program).

2/1

The science of counting
Don't we already know how to count?

Yes, we can all point to the objects we are counting, saying “1, 2, 3,...".
But imagine counting 11,881,376 things this way: it could take most of a
year. An example of this many things we might want to count is the
collection of all possible 5-letter strings. But | got that number without
counting anything.

To actually count them one by one, we would need to have a list of them.
So we might ask a computer to generated that list.... But we might as
well ask it to count them for us. This would take a fraction of a second
(plus the time it took us to write the program). But the same task for
12-letter strings would take a computer at least a year. ..

2/1

The science of counting
Don't we already know how to count?

Yes, we can all point to the objects we are counting, saying “1, 2, 3,...".
But imagine counting 11,881,376 things this way: it could take most of a
year. An example of this many things we might want to count is the
collection of all possible 5-letter strings. But | got that number without
counting anything.

To actually count them one by one, we would need to have a list of them.
So we might ask a computer to generated that list.... But we might as
well ask it to count them for us. This would take a fraction of a second
(plus the time it took us to write the program). But the same task for
12-letter strings would take a computer at least a year. .. but there are
ways to compute the number of them (95,428,956,661,682,176) in a
fraction of a second.

2/1

The science of counting
Don't we already know how to count?

Yes, we can all point to the objects we are counting, saying “1, 2, 3,...".
But imagine counting 11,881,376 things this way: it could take most of a
year. An example of this many things we might want to count is the
collection of all possible 5-letter strings. But | got that number without
counting anything.

To actually count them one by one, we would need to have a list of them.
So we might ask a computer to generated that list.... But we might as
well ask it to count them for us. This would take a fraction of a second
(plus the time it took us to write the program). But the same task for
12-letter strings would take a computer at least a year. .. but there are
ways to compute the number of them (95,428,956,661,682,176) in a
fraction of a second.

Combinatorics gives us tools to count these large amounts in a short time.

2/1

What combinatorics helps us count

What we count are sets. You will be expected to know the rudiments of
set theory (some of which is reviewed below).

3/1

What combinatorics helps us count

What we count are sets. You will be expected to know the rudiments of
set theory (some of which is reviewed below).

We usually use a capital letter like A or S to represent a set. We use
“x € A" to express the statement that x is an element in A.

3/1

What combinatorics helps us count
What we count are sets. You will be expected to know the rudiments of
set theory (some of which is reviewed below).

We usually use a capital letter like A or S to represent a set. We use
“x € A" to express the statement that x is an element in A. We use
"B C A" to express the statement that B is a subset of A. This means
that every element of B is also in A.

3/1

What combinatorics helps us count

What we count are sets. You will be expected to know the rudiments of
set theory (some of which is reviewed below).

We usually use a capital letter like A or S to represent a set. We use
“x € A" to express the statement that x is an element in A. We use
"B C A" to express the statement that B is a subset of A. This means
that every element of B is also in A.

We use |A| to represent the number of elements in A.

3/1

What combinatorics helps us count

What we count are sets. You will be expected to know the rudiments of
set theory (some of which is reviewed below).

We usually use a capital letter like A or S to represent a set. We use
“x € A" to express the statement that x is an element in A. We use
"B C A" to express the statement that B is a subset of A. This means
that every element of B is also in A.

We use |A| to represent the number of elements in A. We use curly braces
around a list of objects to represent the set with those objects as elements:
B ={a,b,c} is a set with 3 elements so |B| = 3.

3/1

What combinatorics helps us count

What we count are sets. You will be expected to know the rudiments of
set theory (some of which is reviewed below).

We usually use a capital letter like A or S to represent a set. We use
“x € A" to express the statement that x is an element in A. We use
"B C A" to express the statement that B is a subset of A. This means
that every element of B is also in A.

We use |A| to represent the number of elements in A. We use curly braces
around a list of objects to represent the set with those objects as elements:
B ={a,b,c} is a set with 3 elements so |B| = 3.

Sets can themselves be elements in another set. For example
S = {{a,b},{a,c},{b,c}} contains all the two-element subsets of B.

3/1

What combinatorics helps us count

What we count are sets. You will be expected to know the rudiments of
set theory (some of which is reviewed below).

We usually use a capital letter like A or S to represent a set. We use

“x € A" to express the statement that x is an element in A. We use

"B C A" to express the statement that B is a subset of A. This means
that every element of B is also in A.

We use |A| to represent the number of elements in A. We use curly braces
around a list of objects to represent the set with those objects as elements:
B ={a,b,c} is a set with 3 elements so |B| = 3.

Sets can themselves be elements in another set. For example

S = {{a,b},{a,c},{b,c}} contains all the two-element subsets of B. A
set with k£ elements is called a k-set, so S is a 3-set and the elements of S
are 2-sets.

3/1

Sets with structure

If a set is given by a short list, we can just count its elements. If a large set
has some structure, we can often make use of that structure to count it.

4/1

Sets with structure

If a set is given by a short list, we can just count its elements. If a large set
has some structure, we can often make use of that structure to count it.

For example, if a large set can be generated by a short algorithm, we
might be able to use that algorithm to compute the number of elements.
We'll see an example of this shortly.

4/1

Sets with structure

If a set is given by a short list, we can just count its elements. If a large set
has some structure, we can often make use of that structure to count it.
For example, if a large set can be generated by a short algorithm, we
might be able to use that algorithm to compute the number of elements.
We'll see an example of this shortly.

If a large set is defined by a short description, we might be able to use that
description to compute the number of elements. We'll see an example
shortly.

4/1

Sets with structure

If a set is given by a short list, we can just count its elements. If a large set
has some structure, we can often make use of that structure to count it.
For example, if a large set can be generated by a short algorithm, we
might be able to use that algorithm to compute the number of elements.
We'll see an example of this shortly.

If a large set is defined by a short description, we might be able to use that
description to compute the number of elements. We'll see an example
shortly.

We use the special symbol N for the counting numbers (also known as the
“natural numbers”). That is N = {1,2,3,4,...}. This is an infinite set.

4/1

Two examples

If P(x) denotes some statement about an element z, then the notation
C ={x € E: P(x)} represents the set of objects = that belong to E for
which the statement P(z) is true. This is part of what | meant by ‘a set
given by description’.

5/1

Two examples

If P(x) denotes some statement about an element z, then the notation
C ={x € E: P(x)} represents the set of objects = that belong to E for
which the statement P(z) is true. This is part of what | meant by ‘a set
given by description’.

The set D = {x € N: 2z <100} has 100 elements. We get this from the
description: D contains all the counting numbers from 1 to 100. It
essentially counts itself.

5/1

Two examples

If P(x) denotes some statement about an element z, then the notation
C ={x € E: P(x)} represents the set of objects = that belong to E for
which the statement P(z) is true. This is part of what | meant by ‘a set
given by description’.

The set D = {x € N: 2z <100} has 100 elements. We get this from the
description: D contains all the counting numbers from 1 to 100. It
essentially counts itself.

The set of 5-letter strings (lets say they contain only uppercase English
letters) can be generated by an algorithm using loops of length 26 nested
5 levels deep. A loop of length 26 inside a loop of length 26 has it
contents executed 26 x 26 times. Extending this to 5 levels deep gives us
265 which is the number 11,881,376 we saw before.

5/1

The rules of 1-to-1 correspondence and containment

If two sets A and B are in I-to-1 correspondence, then |A| = |B|.

6/1

The rules of 1-to-1 correspondence and containment

If two sets A and B are in I-to-1 correspondence, then |A| = |B|.

This is basic to counting. Counting by ones: “1, 2, 3,..." is nothing more
than matching the set we are counting with a set of counting numbers.
When the set runs out, the number we have reached is the number of its
elements.

6/1

The rules of 1-to-1 correspondence and containment

Rule

If two sets A and B are in I-to-1 correspondence, then |A| = |B|.

This is basic to counting. Counting by ones: “1, 2, 3,..." is nothing more
than matching the set we are counting with a set of counting numbers.
When the set runs out, the number we have reached is the number of its
elements.

Nearly as basic is the following

Rule

If B C A then |B| < |A|. If there are elements of A that are not in B
then |B| < |A|.

The rules of 1-to-1 correspondence and containment

Rule

If two sets A and B are in I-to-1 correspondence, then |A| = |B|.

This is basic to counting. Counting by ones: “1, 2, 3,..." is nothing more
than matching the set we are counting with a set of counting numbers.
When the set runs out, the number we have reached is the number of its
elements.

Nearly as basic is the following

Rule

If B C A then |B| < |A|. If there are elements of A that are not in B
then |B| < |A|.

If we put these together we get: if B is in 1-to-1 correspondence with a
subset of A then |B| < |A].

Rule of sum

Let me first state this in terms of sets. The intersection of sets A and B is
the collection of elements that are in both A and B. We denote it AN B.

7/1

Rule of sum

Let me first state this in terms of sets. The intersection of sets A and B is
the collection of elements that are in both A and B. We denote it AN B.
If there are no elements common to A and B we say they are disjoint. We
can express this as AN B = &, where @ symbolizes the empty set.

7/1

Rule of sum

Let me first state this in terms of sets. The intersection of sets A and B is
the collection of elements that are in both A and B. We denote it AN B.
If there are no elements common to A and B we say they are disjoint. We
can express this as AN B = &, where @ symbolizes the empty set.

The union of sets A and B is the collection of all elements that are in
either A or B. We denote it AU B.

7/1

Rule of sum

Let me first state this in terms of sets. The intersection of sets A and B is
the collection of elements that are in both A and B. We denote it AN B.
If there are no elements common to A and B we say they are disjoint. We
can express this as AN B = &, where @ symbolizes the empty set.

The union of sets A and B is the collection of all elements that are in
either A or B. We denote it AU B. To be clear: elements that appear in
both A and B are not counted twice in AU B.

7/1

Rule of sum

Let me first state this in terms of sets. The intersection of sets A and B is
the collection of elements that are in both A and B. We denote it AN B.
If there are no elements common to A and B we say they are disjoint. We
can express this as AN B = &, where @ symbolizes the empty set.

The union of sets A and B is the collection of all elements that are in
either A or B. We denote it AU B. To be clear: elements that appear in
both A and B are not counted twice in AU B.

|AUB| < |A| + |B|. If A and B are disjoint, then |AU B| = |A| + |B|. In
AUB|=|A|+|B|-|ANB|.

general,

7/1

Rule of sum, restated

Our textbook’s Rule of Sum is the following.

8/1

Rule of sum, restated
Our textbook’s Rule of Sum is the following.

If one task can be performed in m ways, while another task can be
performed in k ways, and the two tasks cannot be performed
simultaneously, then there are m + k possible ways to perform one or the
other task.

8/1

Rule of sum, restated

Our textbook’s Rule of Sum is the following.

If one task can be performed in m ways, while another task can be
performed in k ways, and the two tasks cannot be performed
simultaneously, then there are m + k possible ways to perform one or the
other task.

Both the following tasks will produce an element of AU B: (1) select the
element from A or (2) select the element from set B.

8/1

Rule of sum, restated

Our textbook’s Rule of Sum is the following.

If one task can be performed in m ways, while another task can be
performed in k ways, and the two tasks cannot be performed
simultaneously, then there are m + k possible ways to perform one or the
other task.

Both the following tasks will produce an element of AU B: (1) select the
element from A or (2) select the element from set B.

The first can be done in m = |A| ways, the second in k = |B| ways.

8/1

Rule of sum, restated
Our textbook’s Rule of Sum is the following.

If one task can be performed in m ways, while another task can be
performed in k ways, and the two tasks cannot be performed
simultaneously, then there are m + k possible ways to perform one or the
other task.

Both the following tasks will produce an element of AU B: (1) select the
element from A or (2) select the element from set B.

The first can be done in m = |A| ways, the second in k = |B| ways. If A
and B are disjoint, we cannot select the element simultaneously from both
A and B.

8/1

Rule of sum, restated

Our textbook’s Rule of Sum is the following.

If one task can be performed in m ways, while another task can be
performed in k ways, and the two tasks cannot be performed
simultaneously, then there are m + k possible ways to perform one or the
other task.

Both the following tasks will produce an element of AU B: (1) select the
element from A or (2) select the element from set B.

The first can be done in m = |A| ways, the second in k = |B| ways. If A
and B are disjoint, we cannot select the element simultaneously from both
A and B. So the number of ways to select from either A or B is m + k.
This is the same as the number of elements in AU B.

8/1

Rule of sum, restated

Our textbook’s Rule of Sum is the following.

If one task can be performed in m ways, while another task can be
performed in k ways, and the two tasks cannot be performed
simultaneously, then there are m + k possible ways to perform one or the
other task.

Both the following tasks will produce an element of AU B: (1) select the
element from A or (2) select the element from set B.

The first can be done in m = |A| ways, the second in k = |B| ways. If A
and B are disjoint, we cannot select the element simultaneously from both
A and B. So the number of ways to select from either A or B is m + k.
This is the same as the number of elements in AU B.

The rule of sum extends to any number of tasks, as long as no two tasks
can be performed simultaneously.

8/1

Rule of product

Following the idea of building a set by performing tasks, we have the
following rule:

Suppose one task can be performed in m ways and a second task can be
performed in k ways. Then the number of ways to perform the first
followed by the second is mk.

9/1

Rule of product

Following the idea of building a set by performing tasks, we have the
following rule:

Suppose one task can be performed in m ways and a second task can be
performed in k ways. Then the number of ways to perform the first
followed by the second is mk.

This rule extends to a sequence of any number of tasks.

9/1

Rule of product

Following the idea of building a set by performing tasks, we have the
following rule:

Suppose one task can be performed in m ways and a second task can be
performed in k ways. Then the number of ways to perform the first
followed by the second is mk.

This rule extends to a sequence of any number of tasks.

It is important, in applications, that the following are satisfied

1. The number of ways to perform a task does not depend on the
outcome of the previous tasks.

9/1

Rule of product

Following the idea of building a set by performing tasks, we have the
following rule:

Suppose one task can be performed in m ways and a second task can be
performed in k ways. Then the number of ways to perform the first
followed by the second is mk.

This rule extends to a sequence of any number of tasks.
It is important, in applications, that the following are satisfied
1. The number of ways to perform a task does not depend on the
outcome of the previous tasks.

2. If we use this to count final outcomes, we must have
® [f any one task is done differently, the final outcome is different.

9/1

Rule of product

Following the idea of building a set by performing tasks, we have the
following rule:

Suppose one task can be performed in m ways and a second task can be
performed in k ways. Then the number of ways to perform the first
followed by the second is mk.

This rule extends to a sequence of any number of tasks.

It is important, in applications, that the following are satisfied

1. The number of ways to perform a task does not depend on the
outcome of the previous tasks.
2. If we use this to count final outcomes, we must have

® [f any one task is done differently, the final outcome is different.
® All final outcomes are produced by some way of performing the
sequence of tasks.

9/1

Examples

How many 5-letter strings are possible?

10/1

Examples
How many 5-letter strings are possible?

Imagine building a string in 5 steps: (1) select the first letter of the string,
(2) select the second letter, etc.

10/1

Examples
How many 5-letter strings are possible?

Imagine building a string in 5 steps: (1) select the first letter of the string,
(2) select the second letter, etc. There are 26 ways to perform each step.

10/1

Examples
How many 5-letter strings are possible?

Imagine building a string in 5 steps: (1) select the first letter of the string,
(2) select the second letter, etc. There are 26 ways to perform each step.
A different choice at any step produces a different string.

10/1

Examples

How many 5-letter strings are possible?

Imagine building a string in 5 steps: (1) select the first letter of the string,
(2) select the second letter, etc. There are 26 ways to perform each step.
A different choice at any step produces a different string. Every string is
the result of some sequence of choices.

10/1

Examples
How many 5-letter strings are possible?

Imagine building a string in 5 steps: (1) select the first letter of the string,
(2) select the second letter, etc. There are 26 ways to perform each step.
A different choice at any step produces a different string. Every string is
the result of some sequence of choices. So there are

26 - 26 - 26 - 26 - 26 = 26° possibilities.

10/1

Examples
How many 5-letter strings are possible?

Imagine building a string in 5 steps: (1) select the first letter of the string,
(2) select the second letter, etc. There are 26 ways to perform each step.
A different choice at any step produces a different string. Every string is
the result of some sequence of choices. So there are

26 - 26 - 26 - 26 - 26 = 26° possibilities.

How many 5-letter strings have all different letters?

10/1

Examples

How many 5-letter strings are possible?

Imagine building a string in 5 steps: (1) select the first letter of the string,
(2) select the second letter, etc. There are 26 ways to perform each step.
A different choice at any step produces a different string. Every string is
the result of some sequence of choices. So there are

26 - 26 - 26 - 26 - 26 = 26° possibilities.

How many 5-letter strings have all different letters?

Use almost the same sequence of tasks: (1) select a first letter, (2) select
a different second letter, (3) select a third letter different from the first
two, etc.

10/1

Examples
How many 5-letter strings are possible?

Imagine building a string in 5 steps: (1) select the first letter of the string,
(2) select the second letter, etc. There are 26 ways to perform each step.
A different choice at any step produces a different string. Every string is
the result of some sequence of choices. So there are

26 - 26 - 26 - 26 - 26 = 26° possibilities.

How many 5-letter strings have all different letters?

Use almost the same sequence of tasks: (1) select a first letter, (2) select
a different second letter, (3) select a third letter different from the first
two, etc.

There are 26 ways to perform step 1, 25 ways to perform step 2, etc.

10/1

Examples

How many 5-letter strings are possible?

Imagine building a string in 5 steps: (1) select the first letter of the string,
(2) select the second letter, etc. There are 26 ways to perform each step.
A different choice at any step produces a different string. Every string is
the result of some sequence of choices. So there are

26 - 26 - 26 - 26 - 26 = 26° possibilities.

How many 5-letter strings have all different letters?

Use almost the same sequence of tasks: (1) select a first letter, (2) select
a different second letter, (3) select a third letter different from the first
two, etc.

There are 26 ways to perform step 1, 25 ways to perform step 2, etc. As
before, a different choice at any step produces a different string.

10/1

Examples

How many 5-letter strings are possible?

Imagine building a string in 5 steps: (1) select the first letter of the string,
(2) select the second letter, etc. There are 26 ways to perform each step.
A different choice at any step produces a different string. Every string is
the result of some sequence of choices. So there are

26 - 26 - 26 - 26 - 26 = 26° possibilities.

How many 5-letter strings have all different letters?

Use almost the same sequence of tasks: (1) select a first letter, (2) select
a different second letter, (3) select a third letter different from the first
two, etc.

There are 26 ways to perform step 1, 25 ways to perform step 2, etc. As
before, a different choice at any step produces a different string. Every
string is the result of some sequence of choices.

10/1

Examples
How many 5-letter strings are possible?

Imagine building a string in 5 steps: (1) select the first letter of the string,
(2) select the second letter, etc. There are 26 ways to perform each step.
A different choice at any step produces a different string. Every string is
the result of some sequence of choices. So there are

26 - 26 - 26 - 26 - 26 = 26° possibilities.

How many 5-letter strings have all different letters?

Use almost the same sequence of tasks: (1) select a first letter, (2) select
a different second letter, (3) select a third letter different from the first
two, etc.

There are 26 ways to perform step 1, 25 ways to perform step 2, etc. As
before, a different choice at any step produces a different string. Every
string is the result of some sequence of choices. So there are

26 -25-24 - 23 - 22 possibilities.

10/1

A picture

The following illustrates building strings of length 2 from the letters A, B,
and C without repeated letters. This illustrates the rule of product: the
first task (select a letter) produces a 3-way branching, and then the second
task (select a different letter) produces 2-way branching. There are a total
of 3 -2 paths to the different final results.

11/1

