
Some Basic Principles of
Combinatorics

Daniel H. Luecking

August 21, 2023

1 / 1

The science of counting

Don’t we already know how to count?

Yes, we can all point to the objects we are counting, saying “1, 2, 3,. . . ”.
But imagine counting 11,881,376 things this way: it could take most of a
year. An example of this many things we might want to count is the
collection of all possible 5-letter strings. But I got that number without
counting anything.

To actually count them one by one, we would need to have a list of them.
So we might ask a computer to generated that list. . . . But we might as
well ask it to count them for us. This would take a fraction of a second
(plus the time it took us to write the program). But the same task for
12-letter strings would take a computer at least a year. . . but there are
ways to compute the number of them (95,428,956,661,682,176) in a
fraction of a second.

Combinatorics gives us tools to count these large amounts in a short time.

2 / 1

The science of counting

Don’t we already know how to count?

Yes, we can all point to the objects we are counting, saying “1, 2, 3,. . . ”.
But imagine counting 11,881,376 things this way: it could take most of a
year.

An example of this many things we might want to count is the
collection of all possible 5-letter strings. But I got that number without
counting anything.

To actually count them one by one, we would need to have a list of them.
So we might ask a computer to generated that list. . . . But we might as
well ask it to count them for us. This would take a fraction of a second
(plus the time it took us to write the program). But the same task for
12-letter strings would take a computer at least a year. . . but there are
ways to compute the number of them (95,428,956,661,682,176) in a
fraction of a second.

Combinatorics gives us tools to count these large amounts in a short time.

2 / 1

The science of counting

Don’t we already know how to count?

Yes, we can all point to the objects we are counting, saying “1, 2, 3,. . . ”.
But imagine counting 11,881,376 things this way: it could take most of a
year. An example of this many things we might want to count is the
collection of all possible 5-letter strings.

But I got that number without
counting anything.

To actually count them one by one, we would need to have a list of them.
So we might ask a computer to generated that list. . . . But we might as
well ask it to count them for us. This would take a fraction of a second
(plus the time it took us to write the program). But the same task for
12-letter strings would take a computer at least a year. . . but there are
ways to compute the number of them (95,428,956,661,682,176) in a
fraction of a second.

Combinatorics gives us tools to count these large amounts in a short time.

2 / 1

The science of counting

Don’t we already know how to count?

Yes, we can all point to the objects we are counting, saying “1, 2, 3,. . . ”.
But imagine counting 11,881,376 things this way: it could take most of a
year. An example of this many things we might want to count is the
collection of all possible 5-letter strings. But I got that number without
counting anything.

To actually count them one by one, we would need to have a list of them.
So we might ask a computer to generated that list. . . . But we might as
well ask it to count them for us. This would take a fraction of a second
(plus the time it took us to write the program). But the same task for
12-letter strings would take a computer at least a year. . . but there are
ways to compute the number of them (95,428,956,661,682,176) in a
fraction of a second.

Combinatorics gives us tools to count these large amounts in a short time.

2 / 1

The science of counting

Don’t we already know how to count?

Yes, we can all point to the objects we are counting, saying “1, 2, 3,. . . ”.
But imagine counting 11,881,376 things this way: it could take most of a
year. An example of this many things we might want to count is the
collection of all possible 5-letter strings. But I got that number without
counting anything.

To actually count them one by one, we would need to have a list of them.
So we might ask a computer to generated that list. . . .

But we might as
well ask it to count them for us. This would take a fraction of a second
(plus the time it took us to write the program). But the same task for
12-letter strings would take a computer at least a year. . . but there are
ways to compute the number of them (95,428,956,661,682,176) in a
fraction of a second.

Combinatorics gives us tools to count these large amounts in a short time.

2 / 1

The science of counting

Don’t we already know how to count?

Yes, we can all point to the objects we are counting, saying “1, 2, 3,. . . ”.
But imagine counting 11,881,376 things this way: it could take most of a
year. An example of this many things we might want to count is the
collection of all possible 5-letter strings. But I got that number without
counting anything.

To actually count them one by one, we would need to have a list of them.
So we might ask a computer to generated that list. . . . But we might as
well ask it to count them for us. This would take a fraction of a second
(plus the time it took us to write the program).

But the same task for
12-letter strings would take a computer at least a year. . . but there are
ways to compute the number of them (95,428,956,661,682,176) in a
fraction of a second.

Combinatorics gives us tools to count these large amounts in a short time.

2 / 1

The science of counting

Don’t we already know how to count?

Yes, we can all point to the objects we are counting, saying “1, 2, 3,. . . ”.
But imagine counting 11,881,376 things this way: it could take most of a
year. An example of this many things we might want to count is the
collection of all possible 5-letter strings. But I got that number without
counting anything.

To actually count them one by one, we would need to have a list of them.
So we might ask a computer to generated that list. . . . But we might as
well ask it to count them for us. This would take a fraction of a second
(plus the time it took us to write the program). But the same task for
12-letter strings would take a computer at least a year. . .

but there are
ways to compute the number of them (95,428,956,661,682,176) in a
fraction of a second.

Combinatorics gives us tools to count these large amounts in a short time.

2 / 1

The science of counting

Don’t we already know how to count?

Yes, we can all point to the objects we are counting, saying “1, 2, 3,. . . ”.
But imagine counting 11,881,376 things this way: it could take most of a
year. An example of this many things we might want to count is the
collection of all possible 5-letter strings. But I got that number without
counting anything.

To actually count them one by one, we would need to have a list of them.
So we might ask a computer to generated that list. . . . But we might as
well ask it to count them for us. This would take a fraction of a second
(plus the time it took us to write the program). But the same task for
12-letter strings would take a computer at least a year. . . but there are
ways to compute the number of them (95,428,956,661,682,176) in a
fraction of a second.

Combinatorics gives us tools to count these large amounts in a short time.

2 / 1

The science of counting

Don’t we already know how to count?

Yes, we can all point to the objects we are counting, saying “1, 2, 3,. . . ”.
But imagine counting 11,881,376 things this way: it could take most of a
year. An example of this many things we might want to count is the
collection of all possible 5-letter strings. But I got that number without
counting anything.

To actually count them one by one, we would need to have a list of them.
So we might ask a computer to generated that list. . . . But we might as
well ask it to count them for us. This would take a fraction of a second
(plus the time it took us to write the program). But the same task for
12-letter strings would take a computer at least a year. . . but there are
ways to compute the number of them (95,428,956,661,682,176) in a
fraction of a second.

Combinatorics gives us tools to count these large amounts in a short time.

2 / 1

What combinatorics helps us count

What we count are sets. You will be expected to know the rudiments of
set theory (some of which is reviewed below).

We usually use a capital letter like A or S to represent a set. We use
“x ∈ A” to express the statement that x is an element in A. We use
“B ⊆ A” to express the statement that B is a subset of A. This means
that every element of B is also in A.

We use |A| to represent the number of elements in A. We use curly braces
around a list of objects to represent the set with those objects as elements:
B = {a, b, c} is a set with 3 elements so |B| = 3.

Sets can themselves be elements in another set. For example
S = {{a, b}, {a, c}, {b, c}} contains all the two-element subsets of B. A
set with k elements is called a k-set, so S is a 3-set and the elements of S
are 2-sets.

3 / 1

What combinatorics helps us count

What we count are sets. You will be expected to know the rudiments of
set theory (some of which is reviewed below).

We usually use a capital letter like A or S to represent a set. We use
“x ∈ A” to express the statement that x is an element in A.

We use
“B ⊆ A” to express the statement that B is a subset of A. This means
that every element of B is also in A.

We use |A| to represent the number of elements in A. We use curly braces
around a list of objects to represent the set with those objects as elements:
B = {a, b, c} is a set with 3 elements so |B| = 3.

Sets can themselves be elements in another set. For example
S = {{a, b}, {a, c}, {b, c}} contains all the two-element subsets of B. A
set with k elements is called a k-set, so S is a 3-set and the elements of S
are 2-sets.

3 / 1

What combinatorics helps us count

What we count are sets. You will be expected to know the rudiments of
set theory (some of which is reviewed below).

We usually use a capital letter like A or S to represent a set. We use
“x ∈ A” to express the statement that x is an element in A. We use
“B ⊆ A” to express the statement that B is a subset of A. This means
that every element of B is also in A.

We use |A| to represent the number of elements in A. We use curly braces
around a list of objects to represent the set with those objects as elements:
B = {a, b, c} is a set with 3 elements so |B| = 3.

Sets can themselves be elements in another set. For example
S = {{a, b}, {a, c}, {b, c}} contains all the two-element subsets of B. A
set with k elements is called a k-set, so S is a 3-set and the elements of S
are 2-sets.

3 / 1

What combinatorics helps us count

What we count are sets. You will be expected to know the rudiments of
set theory (some of which is reviewed below).

We usually use a capital letter like A or S to represent a set. We use
“x ∈ A” to express the statement that x is an element in A. We use
“B ⊆ A” to express the statement that B is a subset of A. This means
that every element of B is also in A.

We use |A| to represent the number of elements in A.

We use curly braces
around a list of objects to represent the set with those objects as elements:
B = {a, b, c} is a set with 3 elements so |B| = 3.

Sets can themselves be elements in another set. For example
S = {{a, b}, {a, c}, {b, c}} contains all the two-element subsets of B. A
set with k elements is called a k-set, so S is a 3-set and the elements of S
are 2-sets.

3 / 1

What combinatorics helps us count

What we count are sets. You will be expected to know the rudiments of
set theory (some of which is reviewed below).

We usually use a capital letter like A or S to represent a set. We use
“x ∈ A” to express the statement that x is an element in A. We use
“B ⊆ A” to express the statement that B is a subset of A. This means
that every element of B is also in A.

We use |A| to represent the number of elements in A. We use curly braces
around a list of objects to represent the set with those objects as elements:
B = {a, b, c} is a set with 3 elements so |B| = 3.

Sets can themselves be elements in another set. For example
S = {{a, b}, {a, c}, {b, c}} contains all the two-element subsets of B. A
set with k elements is called a k-set, so S is a 3-set and the elements of S
are 2-sets.

3 / 1

What combinatorics helps us count

What we count are sets. You will be expected to know the rudiments of
set theory (some of which is reviewed below).

We usually use a capital letter like A or S to represent a set. We use
“x ∈ A” to express the statement that x is an element in A. We use
“B ⊆ A” to express the statement that B is a subset of A. This means
that every element of B is also in A.

We use |A| to represent the number of elements in A. We use curly braces
around a list of objects to represent the set with those objects as elements:
B = {a, b, c} is a set with 3 elements so |B| = 3.

Sets can themselves be elements in another set. For example
S = {{a, b}, {a, c}, {b, c}} contains all the two-element subsets of B.

A
set with k elements is called a k-set, so S is a 3-set and the elements of S
are 2-sets.

3 / 1

What combinatorics helps us count

What we count are sets. You will be expected to know the rudiments of
set theory (some of which is reviewed below).

We usually use a capital letter like A or S to represent a set. We use
“x ∈ A” to express the statement that x is an element in A. We use
“B ⊆ A” to express the statement that B is a subset of A. This means
that every element of B is also in A.

We use |A| to represent the number of elements in A. We use curly braces
around a list of objects to represent the set with those objects as elements:
B = {a, b, c} is a set with 3 elements so |B| = 3.

Sets can themselves be elements in another set. For example
S = {{a, b}, {a, c}, {b, c}} contains all the two-element subsets of B. A
set with k elements is called a k-set, so S is a 3-set and the elements of S
are 2-sets.

3 / 1

Sets with structure

If a set is given by a short list, we can just count its elements. If a large set
has some structure, we can often make use of that structure to count it.

For example, if a large set can be generated by a short algorithm, we
might be able to use that algorithm to compute the number of elements.
We’ll see an example of this shortly.

If a large set is defined by a short description, we might be able to use that
description to compute the number of elements. We’ll see an example
shortly.

We use the special symbol N for the counting numbers (also known as the
“natural numbers”). That is N = {1, 2, 3, 4, . . . }. This is an infinite set.

4 / 1

Sets with structure

If a set is given by a short list, we can just count its elements. If a large set
has some structure, we can often make use of that structure to count it.

For example, if a large set can be generated by a short algorithm, we
might be able to use that algorithm to compute the number of elements.
We’ll see an example of this shortly.

If a large set is defined by a short description, we might be able to use that
description to compute the number of elements. We’ll see an example
shortly.

We use the special symbol N for the counting numbers (also known as the
“natural numbers”). That is N = {1, 2, 3, 4, . . . }. This is an infinite set.

4 / 1

Sets with structure

If a set is given by a short list, we can just count its elements. If a large set
has some structure, we can often make use of that structure to count it.

For example, if a large set can be generated by a short algorithm, we
might be able to use that algorithm to compute the number of elements.
We’ll see an example of this shortly.

If a large set is defined by a short description, we might be able to use that
description to compute the number of elements. We’ll see an example
shortly.

We use the special symbol N for the counting numbers (also known as the
“natural numbers”). That is N = {1, 2, 3, 4, . . . }. This is an infinite set.

4 / 1

Sets with structure

If a set is given by a short list, we can just count its elements. If a large set
has some structure, we can often make use of that structure to count it.

For example, if a large set can be generated by a short algorithm, we
might be able to use that algorithm to compute the number of elements.
We’ll see an example of this shortly.

If a large set is defined by a short description, we might be able to use that
description to compute the number of elements. We’ll see an example
shortly.

We use the special symbol N for the counting numbers (also known as the
“natural numbers”). That is N = {1, 2, 3, 4, . . . }. This is an infinite set.

4 / 1

Two examples

If P (x) denotes some statement about an element x, then the notation
C = {x ∈ E : P (x)} represents the set of objects x that belong to E for
which the statement P (x) is true. This is part of what I meant by ‘a set
given by description’.

The set D = {x ∈ N : x ≤ 100} has 100 elements. We get this from the
description: D contains all the counting numbers from 1 to 100. It
essentially counts itself.

The set of 5-letter strings (lets say they contain only uppercase English
letters) can be generated by an algorithm using loops of length 26 nested
5 levels deep. A loop of length 26 inside a loop of length 26 has it
contents executed 26× 26 times. Extending this to 5 levels deep gives us
265,which is the number 11,881,376 we saw before.

5 / 1

Two examples

If P (x) denotes some statement about an element x, then the notation
C = {x ∈ E : P (x)} represents the set of objects x that belong to E for
which the statement P (x) is true. This is part of what I meant by ‘a set
given by description’.

The set D = {x ∈ N : x ≤ 100} has 100 elements. We get this from the
description: D contains all the counting numbers from 1 to 100. It
essentially counts itself.

The set of 5-letter strings (lets say they contain only uppercase English
letters) can be generated by an algorithm using loops of length 26 nested
5 levels deep. A loop of length 26 inside a loop of length 26 has it
contents executed 26× 26 times. Extending this to 5 levels deep gives us
265,which is the number 11,881,376 we saw before.

5 / 1

Two examples

If P (x) denotes some statement about an element x, then the notation
C = {x ∈ E : P (x)} represents the set of objects x that belong to E for
which the statement P (x) is true. This is part of what I meant by ‘a set
given by description’.

The set D = {x ∈ N : x ≤ 100} has 100 elements. We get this from the
description: D contains all the counting numbers from 1 to 100. It
essentially counts itself.

The set of 5-letter strings (lets say they contain only uppercase English
letters) can be generated by an algorithm using loops of length 26 nested
5 levels deep. A loop of length 26 inside a loop of length 26 has it
contents executed 26× 26 times. Extending this to 5 levels deep gives us
265,which is the number 11,881,376 we saw before.

5 / 1

The rules of 1-to-1 correspondence and containment

Rule

If two sets A and B are in 1-to-1 correspondence, then |A| = |B|.

This is basic to counting. Counting by ones: “1, 2, 3,. . . ” is nothing more
than matching the set we are counting with a set of counting numbers.
When the set runs out, the number we have reached is the number of its
elements.

Nearly as basic is the following

Rule

If B ⊆ A then |B| ≤ |A|. If there are elements of A that are not in B
then |B| < |A|.

If we put these together we get: if B is in 1-to-1 correspondence with a
subset of A then |B| ≤ |A|.

6 / 1

The rules of 1-to-1 correspondence and containment

Rule

If two sets A and B are in 1-to-1 correspondence, then |A| = |B|.

This is basic to counting. Counting by ones: “1, 2, 3,. . . ” is nothing more
than matching the set we are counting with a set of counting numbers.
When the set runs out, the number we have reached is the number of its
elements.

Nearly as basic is the following

Rule

If B ⊆ A then |B| ≤ |A|. If there are elements of A that are not in B
then |B| < |A|.

If we put these together we get: if B is in 1-to-1 correspondence with a
subset of A then |B| ≤ |A|.

6 / 1

The rules of 1-to-1 correspondence and containment

Rule

If two sets A and B are in 1-to-1 correspondence, then |A| = |B|.

This is basic to counting. Counting by ones: “1, 2, 3,. . . ” is nothing more
than matching the set we are counting with a set of counting numbers.
When the set runs out, the number we have reached is the number of its
elements.

Nearly as basic is the following

Rule

If B ⊆ A then |B| ≤ |A|. If there are elements of A that are not in B
then |B| < |A|.

If we put these together we get: if B is in 1-to-1 correspondence with a
subset of A then |B| ≤ |A|.

6 / 1

The rules of 1-to-1 correspondence and containment

Rule

If two sets A and B are in 1-to-1 correspondence, then |A| = |B|.

This is basic to counting. Counting by ones: “1, 2, 3,. . . ” is nothing more
than matching the set we are counting with a set of counting numbers.
When the set runs out, the number we have reached is the number of its
elements.

Nearly as basic is the following

Rule

If B ⊆ A then |B| ≤ |A|. If there are elements of A that are not in B
then |B| < |A|.

If we put these together we get: if B is in 1-to-1 correspondence with a
subset of A then |B| ≤ |A|.

6 / 1

Rule of sum

Let me first state this in terms of sets. The intersection of sets A and B is
the collection of elements that are in both A and B. We denote it A ∩B.

If there are no elements common to A and B we say they are disjoint. We
can express this as A ∩B = ∅, where ∅ symbolizes the empty set.

The union of sets A and B is the collection of all elements that are in
either A or B. We denote it A ∪B. To be clear: elements that appear in
both A and B are not counted twice in A ∪B.

Rule

|A ∪B| ≤ |A|+ |B|. If A and B are disjoint, then |A ∪B| = |A|+ |B|. In
general, |A ∪B| = |A|+ |B| − |A ∩B|.

7 / 1

Rule of sum

Let me first state this in terms of sets. The intersection of sets A and B is
the collection of elements that are in both A and B. We denote it A ∩B.
If there are no elements common to A and B we say they are disjoint. We
can express this as A ∩B = ∅, where ∅ symbolizes the empty set.

The union of sets A and B is the collection of all elements that are in
either A or B. We denote it A ∪B. To be clear: elements that appear in
both A and B are not counted twice in A ∪B.

Rule

|A ∪B| ≤ |A|+ |B|. If A and B are disjoint, then |A ∪B| = |A|+ |B|. In
general, |A ∪B| = |A|+ |B| − |A ∩B|.

7 / 1

Rule of sum

Let me first state this in terms of sets. The intersection of sets A and B is
the collection of elements that are in both A and B. We denote it A ∩B.
If there are no elements common to A and B we say they are disjoint. We
can express this as A ∩B = ∅, where ∅ symbolizes the empty set.

The union of sets A and B is the collection of all elements that are in
either A or B. We denote it A ∪B.

To be clear: elements that appear in
both A and B are not counted twice in A ∪B.

Rule

|A ∪B| ≤ |A|+ |B|. If A and B are disjoint, then |A ∪B| = |A|+ |B|. In
general, |A ∪B| = |A|+ |B| − |A ∩B|.

7 / 1

Rule of sum

Let me first state this in terms of sets. The intersection of sets A and B is
the collection of elements that are in both A and B. We denote it A ∩B.
If there are no elements common to A and B we say they are disjoint. We
can express this as A ∩B = ∅, where ∅ symbolizes the empty set.

The union of sets A and B is the collection of all elements that are in
either A or B. We denote it A ∪B. To be clear: elements that appear in
both A and B are not counted twice in A ∪B.

Rule

|A ∪B| ≤ |A|+ |B|. If A and B are disjoint, then |A ∪B| = |A|+ |B|. In
general, |A ∪B| = |A|+ |B| − |A ∩B|.

7 / 1

Rule of sum

Let me first state this in terms of sets. The intersection of sets A and B is
the collection of elements that are in both A and B. We denote it A ∩B.
If there are no elements common to A and B we say they are disjoint. We
can express this as A ∩B = ∅, where ∅ symbolizes the empty set.

The union of sets A and B is the collection of all elements that are in
either A or B. We denote it A ∪B. To be clear: elements that appear in
both A and B are not counted twice in A ∪B.

Rule

|A ∪B| ≤ |A|+ |B|. If A and B are disjoint, then |A ∪B| = |A|+ |B|. In
general, |A ∪B| = |A|+ |B| − |A ∩B|.

7 / 1

Rule of sum, restated

Our textbook’s Rule of Sum is the following.

Rule

If one task can be performed in m ways, while another task can be
performed in k ways, and the two tasks cannot be performed
simultaneously, then there are m+ k possible ways to perform one or the
other task.

Both the following tasks will produce an element of A ∪B: (1) select the
element from A or (2) select the element from set B.

The first can be done in m = |A| ways, the second in k = |B| ways. If A
and B are disjoint, we cannot select the element simultaneously from both
A and B. So the number of ways to select from either A or B is m+ k.
This is the same as the number of elements in A ∪B.

The rule of sum extends to any number of tasks, as long as no two tasks
can be performed simultaneously.

8 / 1

Rule of sum, restated

Our textbook’s Rule of Sum is the following.

Rule

If one task can be performed in m ways, while another task can be
performed in k ways, and the two tasks cannot be performed
simultaneously, then there are m+ k possible ways to perform one or the
other task.

Both the following tasks will produce an element of A ∪B: (1) select the
element from A or (2) select the element from set B.

The first can be done in m = |A| ways, the second in k = |B| ways. If A
and B are disjoint, we cannot select the element simultaneously from both
A and B. So the number of ways to select from either A or B is m+ k.
This is the same as the number of elements in A ∪B.

The rule of sum extends to any number of tasks, as long as no two tasks
can be performed simultaneously.

8 / 1

Rule of sum, restated

Our textbook’s Rule of Sum is the following.

Rule

If one task can be performed in m ways, while another task can be
performed in k ways, and the two tasks cannot be performed
simultaneously, then there are m+ k possible ways to perform one or the
other task.

Both the following tasks will produce an element of A ∪B: (1) select the
element from A or (2) select the element from set B.

The first can be done in m = |A| ways, the second in k = |B| ways. If A
and B are disjoint, we cannot select the element simultaneously from both
A and B. So the number of ways to select from either A or B is m+ k.
This is the same as the number of elements in A ∪B.

The rule of sum extends to any number of tasks, as long as no two tasks
can be performed simultaneously.

8 / 1

Rule of sum, restated

Our textbook’s Rule of Sum is the following.

Rule

If one task can be performed in m ways, while another task can be
performed in k ways, and the two tasks cannot be performed
simultaneously, then there are m+ k possible ways to perform one or the
other task.

Both the following tasks will produce an element of A ∪B: (1) select the
element from A or (2) select the element from set B.

The first can be done in m = |A| ways, the second in k = |B| ways.

If A
and B are disjoint, we cannot select the element simultaneously from both
A and B. So the number of ways to select from either A or B is m+ k.
This is the same as the number of elements in A ∪B.

The rule of sum extends to any number of tasks, as long as no two tasks
can be performed simultaneously.

8 / 1

Rule of sum, restated

Our textbook’s Rule of Sum is the following.

Rule

If one task can be performed in m ways, while another task can be
performed in k ways, and the two tasks cannot be performed
simultaneously, then there are m+ k possible ways to perform one or the
other task.

Both the following tasks will produce an element of A ∪B: (1) select the
element from A or (2) select the element from set B.

The first can be done in m = |A| ways, the second in k = |B| ways. If A
and B are disjoint, we cannot select the element simultaneously from both
A and B.

So the number of ways to select from either A or B is m+ k.
This is the same as the number of elements in A ∪B.

The rule of sum extends to any number of tasks, as long as no two tasks
can be performed simultaneously.

8 / 1

Rule of sum, restated

Our textbook’s Rule of Sum is the following.

Rule

If one task can be performed in m ways, while another task can be
performed in k ways, and the two tasks cannot be performed
simultaneously, then there are m+ k possible ways to perform one or the
other task.

Both the following tasks will produce an element of A ∪B: (1) select the
element from A or (2) select the element from set B.

The first can be done in m = |A| ways, the second in k = |B| ways. If A
and B are disjoint, we cannot select the element simultaneously from both
A and B. So the number of ways to select from either A or B is m+ k.
This is the same as the number of elements in A ∪B.

The rule of sum extends to any number of tasks, as long as no two tasks
can be performed simultaneously.

8 / 1

Rule of sum, restated

Our textbook’s Rule of Sum is the following.

Rule

If one task can be performed in m ways, while another task can be
performed in k ways, and the two tasks cannot be performed
simultaneously, then there are m+ k possible ways to perform one or the
other task.

Both the following tasks will produce an element of A ∪B: (1) select the
element from A or (2) select the element from set B.

The first can be done in m = |A| ways, the second in k = |B| ways. If A
and B are disjoint, we cannot select the element simultaneously from both
A and B. So the number of ways to select from either A or B is m+ k.
This is the same as the number of elements in A ∪B.

The rule of sum extends to any number of tasks, as long as no two tasks
can be performed simultaneously.

8 / 1

Rule of product

Following the idea of building a set by performing tasks, we have the
following rule:

Rule

Suppose one task can be performed in m ways and a second task can be
performed in k ways. Then the number of ways to perform the first
followed by the second is mk.

This rule extends to a sequence of any number of tasks.

It is important, in applications, that the following are satisfied

1. The number of ways to perform a task does not depend on the
outcome of the previous tasks.

2. If we use this to count final outcomes, we must have
• If any one task is done differently, the final outcome is different.
• All final outcomes are produced by some way of performing the

sequence of tasks.

9 / 1

Rule of product

Following the idea of building a set by performing tasks, we have the
following rule:

Rule

Suppose one task can be performed in m ways and a second task can be
performed in k ways. Then the number of ways to perform the first
followed by the second is mk.

This rule extends to a sequence of any number of tasks.

It is important, in applications, that the following are satisfied

1. The number of ways to perform a task does not depend on the
outcome of the previous tasks.

2. If we use this to count final outcomes, we must have
• If any one task is done differently, the final outcome is different.
• All final outcomes are produced by some way of performing the

sequence of tasks.

9 / 1

Rule of product

Following the idea of building a set by performing tasks, we have the
following rule:

Rule

Suppose one task can be performed in m ways and a second task can be
performed in k ways. Then the number of ways to perform the first
followed by the second is mk.

This rule extends to a sequence of any number of tasks.

It is important, in applications, that the following are satisfied

1. The number of ways to perform a task does not depend on the
outcome of the previous tasks.

2. If we use this to count final outcomes, we must have
• If any one task is done differently, the final outcome is different.
• All final outcomes are produced by some way of performing the

sequence of tasks.

9 / 1

Rule of product

Following the idea of building a set by performing tasks, we have the
following rule:

Rule

Suppose one task can be performed in m ways and a second task can be
performed in k ways. Then the number of ways to perform the first
followed by the second is mk.

This rule extends to a sequence of any number of tasks.

It is important, in applications, that the following are satisfied

1. The number of ways to perform a task does not depend on the
outcome of the previous tasks.

2. If we use this to count final outcomes, we must have
• If any one task is done differently, the final outcome is different.

• All final outcomes are produced by some way of performing the
sequence of tasks.

9 / 1

Rule of product

Following the idea of building a set by performing tasks, we have the
following rule:

Rule

Suppose one task can be performed in m ways and a second task can be
performed in k ways. Then the number of ways to perform the first
followed by the second is mk.

This rule extends to a sequence of any number of tasks.

It is important, in applications, that the following are satisfied

1. The number of ways to perform a task does not depend on the
outcome of the previous tasks.

2. If we use this to count final outcomes, we must have
• If any one task is done differently, the final outcome is different.
• All final outcomes are produced by some way of performing the

sequence of tasks.

9 / 1

Examples

How many 5-letter strings are possible?

Imagine building a string in 5 steps: (1) select the first letter of the string,
(2) select the second letter, etc. There are 26 ways to perform each step.
A different choice at any step produces a different string. Every string is
the result of some sequence of choices. So there are
26 · 26 · 26 · 26 · 26 = 265 possibilities.

How many 5-letter strings have all different letters?

Use almost the same sequence of tasks: (1) select a first letter, (2) select
a different second letter, (3) select a third letter different from the first
two, etc.

There are 26 ways to perform step 1, 25 ways to perform step 2, etc. As
before, a different choice at any step produces a different string. Every
string is the result of some sequence of choices. So there are
26 · 25 · 24 · 23 · 22 possibilities.

10 / 1

Examples

How many 5-letter strings are possible?

Imagine building a string in 5 steps: (1) select the first letter of the string,
(2) select the second letter, etc.

There are 26 ways to perform each step.
A different choice at any step produces a different string. Every string is
the result of some sequence of choices. So there are
26 · 26 · 26 · 26 · 26 = 265 possibilities.

How many 5-letter strings have all different letters?

Use almost the same sequence of tasks: (1) select a first letter, (2) select
a different second letter, (3) select a third letter different from the first
two, etc.

There are 26 ways to perform step 1, 25 ways to perform step 2, etc. As
before, a different choice at any step produces a different string. Every
string is the result of some sequence of choices. So there are
26 · 25 · 24 · 23 · 22 possibilities.

10 / 1

Examples

How many 5-letter strings are possible?

Imagine building a string in 5 steps: (1) select the first letter of the string,
(2) select the second letter, etc. There are 26 ways to perform each step.

A different choice at any step produces a different string. Every string is
the result of some sequence of choices. So there are
26 · 26 · 26 · 26 · 26 = 265 possibilities.

How many 5-letter strings have all different letters?

Use almost the same sequence of tasks: (1) select a first letter, (2) select
a different second letter, (3) select a third letter different from the first
two, etc.

There are 26 ways to perform step 1, 25 ways to perform step 2, etc. As
before, a different choice at any step produces a different string. Every
string is the result of some sequence of choices. So there are
26 · 25 · 24 · 23 · 22 possibilities.

10 / 1

Examples

How many 5-letter strings are possible?

Imagine building a string in 5 steps: (1) select the first letter of the string,
(2) select the second letter, etc. There are 26 ways to perform each step.
A different choice at any step produces a different string.

Every string is
the result of some sequence of choices. So there are
26 · 26 · 26 · 26 · 26 = 265 possibilities.

How many 5-letter strings have all different letters?

Use almost the same sequence of tasks: (1) select a first letter, (2) select
a different second letter, (3) select a third letter different from the first
two, etc.

There are 26 ways to perform step 1, 25 ways to perform step 2, etc. As
before, a different choice at any step produces a different string. Every
string is the result of some sequence of choices. So there are
26 · 25 · 24 · 23 · 22 possibilities.

10 / 1

Examples

How many 5-letter strings are possible?

Imagine building a string in 5 steps: (1) select the first letter of the string,
(2) select the second letter, etc. There are 26 ways to perform each step.
A different choice at any step produces a different string. Every string is
the result of some sequence of choices.

So there are
26 · 26 · 26 · 26 · 26 = 265 possibilities.

How many 5-letter strings have all different letters?

Use almost the same sequence of tasks: (1) select a first letter, (2) select
a different second letter, (3) select a third letter different from the first
two, etc.

There are 26 ways to perform step 1, 25 ways to perform step 2, etc. As
before, a different choice at any step produces a different string. Every
string is the result of some sequence of choices. So there are
26 · 25 · 24 · 23 · 22 possibilities.

10 / 1

Examples

How many 5-letter strings are possible?

Imagine building a string in 5 steps: (1) select the first letter of the string,
(2) select the second letter, etc. There are 26 ways to perform each step.
A different choice at any step produces a different string. Every string is
the result of some sequence of choices. So there are
26 · 26 · 26 · 26 · 26 = 265 possibilities.

How many 5-letter strings have all different letters?

Use almost the same sequence of tasks: (1) select a first letter, (2) select
a different second letter, (3) select a third letter different from the first
two, etc.

There are 26 ways to perform step 1, 25 ways to perform step 2, etc. As
before, a different choice at any step produces a different string. Every
string is the result of some sequence of choices. So there are
26 · 25 · 24 · 23 · 22 possibilities.

10 / 1

Examples

How many 5-letter strings are possible?

Imagine building a string in 5 steps: (1) select the first letter of the string,
(2) select the second letter, etc. There are 26 ways to perform each step.
A different choice at any step produces a different string. Every string is
the result of some sequence of choices. So there are
26 · 26 · 26 · 26 · 26 = 265 possibilities.

How many 5-letter strings have all different letters?

Use almost the same sequence of tasks: (1) select a first letter, (2) select
a different second letter, (3) select a third letter different from the first
two, etc.

There are 26 ways to perform step 1, 25 ways to perform step 2, etc. As
before, a different choice at any step produces a different string. Every
string is the result of some sequence of choices. So there are
26 · 25 · 24 · 23 · 22 possibilities.

10 / 1

Examples

How many 5-letter strings are possible?

Imagine building a string in 5 steps: (1) select the first letter of the string,
(2) select the second letter, etc. There are 26 ways to perform each step.
A different choice at any step produces a different string. Every string is
the result of some sequence of choices. So there are
26 · 26 · 26 · 26 · 26 = 265 possibilities.

How many 5-letter strings have all different letters?

Use almost the same sequence of tasks: (1) select a first letter, (2) select
a different second letter, (3) select a third letter different from the first
two, etc.

There are 26 ways to perform step 1, 25 ways to perform step 2, etc. As
before, a different choice at any step produces a different string. Every
string is the result of some sequence of choices. So there are
26 · 25 · 24 · 23 · 22 possibilities.

10 / 1

Examples

How many 5-letter strings are possible?

Imagine building a string in 5 steps: (1) select the first letter of the string,
(2) select the second letter, etc. There are 26 ways to perform each step.
A different choice at any step produces a different string. Every string is
the result of some sequence of choices. So there are
26 · 26 · 26 · 26 · 26 = 265 possibilities.

How many 5-letter strings have all different letters?

Use almost the same sequence of tasks: (1) select a first letter, (2) select
a different second letter, (3) select a third letter different from the first
two, etc.

There are 26 ways to perform step 1, 25 ways to perform step 2, etc.

As
before, a different choice at any step produces a different string. Every
string is the result of some sequence of choices. So there are
26 · 25 · 24 · 23 · 22 possibilities.

10 / 1

Examples

How many 5-letter strings are possible?

Imagine building a string in 5 steps: (1) select the first letter of the string,
(2) select the second letter, etc. There are 26 ways to perform each step.
A different choice at any step produces a different string. Every string is
the result of some sequence of choices. So there are
26 · 26 · 26 · 26 · 26 = 265 possibilities.

How many 5-letter strings have all different letters?

Use almost the same sequence of tasks: (1) select a first letter, (2) select
a different second letter, (3) select a third letter different from the first
two, etc.

There are 26 ways to perform step 1, 25 ways to perform step 2, etc. As
before, a different choice at any step produces a different string.

Every
string is the result of some sequence of choices. So there are
26 · 25 · 24 · 23 · 22 possibilities.

10 / 1

Examples

How many 5-letter strings are possible?

Imagine building a string in 5 steps: (1) select the first letter of the string,
(2) select the second letter, etc. There are 26 ways to perform each step.
A different choice at any step produces a different string. Every string is
the result of some sequence of choices. So there are
26 · 26 · 26 · 26 · 26 = 265 possibilities.

How many 5-letter strings have all different letters?

Use almost the same sequence of tasks: (1) select a first letter, (2) select
a different second letter, (3) select a third letter different from the first
two, etc.

There are 26 ways to perform step 1, 25 ways to perform step 2, etc. As
before, a different choice at any step produces a different string. Every
string is the result of some sequence of choices.

So there are
26 · 25 · 24 · 23 · 22 possibilities.

10 / 1

Examples

How many 5-letter strings are possible?

Imagine building a string in 5 steps: (1) select the first letter of the string,
(2) select the second letter, etc. There are 26 ways to perform each step.
A different choice at any step produces a different string. Every string is
the result of some sequence of choices. So there are
26 · 26 · 26 · 26 · 26 = 265 possibilities.

How many 5-letter strings have all different letters?

Use almost the same sequence of tasks: (1) select a first letter, (2) select
a different second letter, (3) select a third letter different from the first
two, etc.

There are 26 ways to perform step 1, 25 ways to perform step 2, etc. As
before, a different choice at any step produces a different string. Every
string is the result of some sequence of choices. So there are
26 · 25 · 24 · 23 · 22 possibilities.

10 / 1

A picture

The following illustrates building strings of length 2 from the letters A, B,
and C without repeated letters. This illustrates the rule of product: the
first task (select a letter) produces a 3-way branching, and then the second
task (select a different letter) produces 2-way branching. There are a total
of 3 · 2 paths to the different final results.

AB AC BA BC CA CB

A B C

11 / 1

