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So we might ask a computer to generated that list.... But we might as
well ask it to count them for us. This would take a fraction of a second
(plus the time it took us to write the program). But the same task for
12-letter strings would take a computer at least a year. .. but there are
ways to compute the number of them (95,428,956,661,682,176) in a
fraction of a second.

Combinatorics gives us tools to count these large amounts in a short time.
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We usually use a capital letter like A or S to represent a set. We use

“x € A" to express the statement that x is an element in A. We use

"B C A" to express the statement that B is a subset of A. This means
that every element of B is also in A.

We use |A| to represent the number of elements in A. We use curly braces
around a list of objects to represent the set with those objects as elements:
B ={a,b,c} is a set with 3 elements so |B| = 3.

Sets can themselves be elements in another set. For example

S = {{a,b},{a,c},{b,c}} contains all the two-element subsets of B. A
set with k£ elements is called a k-set, so S is a 3-set and the elements of S
are 2-sets.
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C ={x € E: P(x)} represents the set of objects = that belong to E for
which the statement P(z) is true. This is part of what | meant by ‘a set
given by description’.

The set D = {x € N: 2z <100} has 100 elements. We get this from the
description: D contains all the counting numbers from 1 to 100. It
essentially counts itself.

The set of 5-letter strings (lets say they contain only uppercase English
letters) can be generated by an algorithm using loops of length 26 nested
5 levels deep. A loop of length 26 inside a loop of length 26 has it
contents executed 26 x 26 times. Extending this to 5 levels deep gives us
265 which is the number 11,881,376 we saw before.
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Rule

If two sets A and B are in I-to-1 correspondence, then |A| = |B|.

This is basic to counting. Counting by ones: “1, 2, 3,..." is nothing more
than matching the set we are counting with a set of counting numbers.
When the set runs out, the number we have reached is the number of its
elements.

Nearly as basic is the following

Rule

If B C A then |B| < |A|. If there are elements of A that are not in B
then |B| < |A|.

If we put these together we get: if B is in 1-to-1 correspondence with a
subset of A then |B| < |A].
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the collection of elements that are in both A and B. We denote it AN B.
If there are no elements common to A and B we say they are disjoint. We
can express this as AN B = &, where @ symbolizes the empty set.

The union of sets A and B is the collection of all elements that are in
either A or B. We denote it AU B. To be clear: elements that appear in
both A and B are not counted twice in AU B.

|AUB| < |A| + |B|. If A and B are disjoint, then |AU B| = |A| + |B|. In
AUB|=|A|+|B|-|ANB|.

general,
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Our textbook’s Rule of Sum is the following.

If one task can be performed in m ways, while another task can be
performed in k ways, and the two tasks cannot be performed
simultaneously, then there are m + k possible ways to perform one or the
other task.

Both the following tasks will produce an element of AU B: (1) select the
element from A or (2) select the element from set B.

The first can be done in m = |A| ways, the second in k = |B| ways. If A
and B are disjoint, we cannot select the element simultaneously from both
A and B. So the number of ways to select from either A or B is m + k.
This is the same as the number of elements in AU B.

The rule of sum extends to any number of tasks, as long as no two tasks
can be performed simultaneously.
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Rule of product

Following the idea of building a set by performing tasks, we have the
following rule:

Suppose one task can be performed in m ways and a second task can be
performed in k ways. Then the number of ways to perform the first
followed by the second is mk.

This rule extends to a sequence of any number of tasks.

It is important, in applications, that the following are satisfied

1. The number of ways to perform a task does not depend on the
outcome of the previous tasks.
2. If we use this to count final outcomes, we must have

® [f any one task is done differently, the final outcome is different.
® All final outcomes are produced by some way of performing the
sequence of tasks.
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How many 5-letter strings have all different letters?

Use almost the same sequence of tasks: (1) select a first letter, (2) select
a different second letter, (3) select a third letter different from the first
two, etc.

There are 26 ways to perform step 1, 25 ways to perform step 2, etc. As
before, a different choice at any step produces a different string. Every
string is the result of some sequence of choices. So there are

26 -25-24 - 23 - 22 possibilities.
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A picture

The following illustrates building strings of length 2 from the letters A, B,
and C without repeated letters. This illustrates the rule of product: the
first task (select a letter) produces a 3-way branching, and then the second
task (select a different letter) produces 2-way branching. There are a total
of 3 -2 paths to the different final results.
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