Math 3103 Combinatorics (Luecking)
NAME:
(Please print clearly)
Second Exam A (solutions)
March 27, 2024

1. For each of the following first-order recurrence relations, find the solution that satisfies the given initial condition.

$$
\text { (a) } \begin{aligned}
& a_{n}=6 a_{n-1}, \quad n \geq 1 \\
& a_{0} \\
&=3
\end{aligned}
$$

Ans: Geometric progression: $a_{n}=(3) 6^{n}$
(b) $a_{n}=a_{n-1}+7, \quad n \geq 1$, $a_{0}=4$.

Ans: Arithmetic progression: $a_{n}=4+7 n$
(c) $a_{n}=\left(n^{4}+1\right) a_{n-1}, \quad n \geq 1$, $a_{0}=5$.

Ans: Successive multiplications: $a_{n}=5\left(1^{4}+1\right)\left(2^{4}+1\right) \cdots\left(n^{4}+1\right)$.
(d) $a_{n}=a_{n-1}+n^{2} 7^{n}, \quad n \geq 1$, $a_{0}=6$.

Ans: Successive additions: $a_{n}=6+\left(1^{2}\right) 7^{1}+\left(2^{2}\right) 7^{2}+\cdots+n^{2} 7^{n}$
2. For the following second-order recurrence relation, find (i) the characteristic equation and its roots, (ii) the general solution, and (iii) the solution that satisfies the initial conditions.

$$
\begin{aligned}
& a_{n}-8 a_{n-1}+16 a_{n-2}=0, \quad n \geq 2, \\
& a_{0}=1 \text { and } a_{1}=5, .
\end{aligned}
$$

Ans: (i) $r^{2}-8 r+16=0$ has roots 4 and 4 (repeated root).
(ii) General solution: $C_{1} 4^{n}+C_{2} n 4^{n}$.
(iii) The ICs, $C_{1}=1$ and $4 C_{1}+4 C_{2}=5$, give $C_{1}=1$ and $C_{2}=1 / 4$. Thus:

$$
a_{n}=4^{n}+\frac{1}{4} n 4^{n}
$$

3. For the following second-order recurrence relation, find (i) the characteristic equation and its roots, (ii) the general solution, and (iii) the solution that satisfies the initial conditions.

$$
\begin{aligned}
& a_{n}-4 a_{n-1}+13 a_{n-2}=0, \quad n \geq 2, \\
& a_{0}=0 \text { and } a_{1}=4 .
\end{aligned}
$$

Ans: (i) $r^{2}-4 r+13=0$ has roots $r=2 \pm 3 i$.
(ii) General solution: $C_{1}(2+3 i)^{n}+C_{2}(2-3 i)^{n}$.
(iii) The ICs, $C_{1}+C_{2}=0$ and $C_{1}(2+3 i)+C_{2}(2-3 i)=6$, give $C_{1}=\frac{2}{3 i}$ and $C_{2}=\frac{-2}{3 i}$. Thus: $a_{n}=\frac{2}{3 i}(2+3 i)^{n}-\frac{2}{3 i}(2-3 i)^{n}$.
4. For the following nonhomogeneous recurrence relation with initial conditions find (i) the homogeneous solution $a_{n}^{(h)}$, (ii) a particular solution $a_{n}^{(p)}$, and (iii) the solution that satisfies the initial conditions.

$$
\begin{aligned}
& a_{n}-5 a_{n-1}+6 a_{n-2}=6, \quad n \geq 2, \\
& a_{0}=0 \text { and } a_{1}=0
\end{aligned}
$$

Ans: (i) The homogeneous solution is $a_{n}^{(h)}=C_{1} 2^{n}+C_{2} 3^{n}$.
(ii) A particular solution exists in the form $a_{n}^{(p)}=A$ for some constant A. The recurrence relation gives $A-5 A+6 A=6$, so $a_{n}^{(p)}=A=3$.
(iii) The general solution is therefore $C_{1} 2^{n}+C_{2} 3^{n}+3$. The ICs, $C_{1}+C_{2}+3=0$ and $2 C_{1}+3 C_{2}+3=0$, give $C_{1}=-6$ and $C_{2}=3$. Thus:

$$
a_{n}=(-6) 2^{n}+(3) 3^{n}+3
$$

5. For the following recurrence relation problem, find the generating function $F(x)$ for the sequence a_{n} without actually finding a_{n}.

$$
\begin{aligned}
& a_{n}-2 a_{n-1}-4 a_{n-2}=5, \quad n \geq 2 . \\
& a_{0}=1, \quad a_{1}=2
\end{aligned}
$$

Ans: Multiplying by x^{n} and summing gives

$$
\sum_{n=2}^{\infty} a_{n} x^{n}-2 \sum_{n=2}^{\infty} a_{n-1} x^{n}-4 \sum_{n=2}^{\infty} a_{n-2} x^{n}=5 \sum_{n=2}^{\infty} x^{n}
$$

This gives us

$$
F(x)-1-2 x-2 x(F(x)-1)-4 x^{2} F(x)=\frac{5 x^{2}}{1-x}
$$

or

$$
\left(1-2 x-4 x^{2}\right) F(x)=1+\frac{5 x^{2}}{1-x} \text { whence } F(x)=\frac{1+\frac{5 x^{2}}{1-x}}{1-2 x-4 x^{2}}
$$

6. Do the following for the given rings.
(a) The factorization of 2684 into primes is $2684=2^{2} \cdot 11 \cdot 61$. Find (i) the number of units and (ii) the number of proper zero divisors in the ring \mathbb{Z}_{2684}. Your final answers must be completely simplified.
Ans: Units: $\phi(2684)=2^{2} \cdot 11 \cdot 61\left(\frac{1}{2}\right)\left(\frac{10}{11}\right)\left(\frac{60}{61}\right)=1200$
Proper zero divisors: $2684-1200-1=1483$
(b) In the ring \mathbb{Z}_{2003} find $(100)^{-1}$. Your final answer must be an explicit element of \mathbb{Z}_{2003}. (Note: this is not the same ring as the one in part (a).)

Ans: The Euclidean algorithm gives:

$$
\left\{\begin{array} { r l }
{ 2 0 0 3 } & { = 2 0 (1 0 0) + 3 } \\
{ 1 0 0 } & { = 3 3 (3) + 1 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
n=20 k+r_{1} \\
k=33 r_{1}+r_{2}
\end{array}\right.\right.
$$

where $n=2003, k=100, r_{1}=3$, and $r_{2}=1$. Putting $r_{1}=n-20 k$ (from the top equation) into the bottom one gives
$k=33(n-20 k)+r_{2}=33 n-660 k+r_{2}$ and solving for $r_{2}: r_{2}=661 k-33 n$. If we put the values back in, this says $1=661 \cdot 100$ in the ring \mathbb{Z}_{2003}. Thus $(100)^{-1}=661$.

Math 3103 Combinatorics (Luecking)
NAME:
(Please print clearly)
Second Exam B (solutions)
March 27, 2024

1. For each of the following first-order recurrence relations, find the solution that satisfies the given initial condition.

$$
\text { (a) } \begin{aligned}
& a_{n}=7 a_{n-1}, \quad n \geq 1, \\
& a_{0} \\
&=3
\end{aligned}
$$

Ans: Geometric progression: $a_{n}=(3) 7^{n}$
(b) $a_{n}=a_{n-1}+8, \quad n \geq 1$, $a_{0}=4$.

Ans: Arithmetic progression: $a_{n}=4+8 n$
(c) $a_{n}=\left(n^{5}+1\right) a_{n-1}, \quad n \geq 1$, $a_{0}=5$.

Ans: Successive multiplications: $a_{n}=5\left(1^{5}+1\right)\left(2^{5}+1\right) \cdots\left(n^{5}+1\right)$.
(d) $a_{n}=a_{n-1}+n^{2} 8^{n}, \quad n \geq 1$, $a_{0}=6$.

Ans: Successive additions: $a_{n}=6+\left(1^{2}\right) 8^{1}+\left(2^{2}\right) 8^{2}+\cdots+n^{2} 8^{n}$
2. For the following second-order recurrence relation, find (i) the characteristic equation and its roots, (ii) the general solution, and (iii) the solution that satisfies the initial conditions.

$$
\begin{aligned}
& a_{n}-8 a_{n-1}+16 a_{n-2}=0, \quad n \geq 2, \\
& a_{0}=1 \text { and } a_{1}=7,
\end{aligned}
$$

Ans: (i) $r^{2}-8 r+16=0$ has roots 4 and 4 (repeated root).
(ii) General solution: $C_{1} 4^{n}+C_{2} n 4^{n}$.
(iii) The ICs, $C_{1}=1$ and $4 C_{1}+4 C_{2}=7$, give $C_{1}=1$ and $C_{2}=3 / 4$. Thus:

$$
a_{n}=4^{n}+\frac{3}{4} n 4^{n}
$$

3. For the following second-order recurrence relation, find (i) the characteristic equation and its roots, (ii) the general solution, and (iii) the solution that satisfies the initial conditions.

$$
\begin{aligned}
& a_{n}-6 a_{n-1}+13 a_{n-2}=0, \quad n \geq 2, \\
& a_{0}=0 \text { and } a_{1}=6 .
\end{aligned}
$$

Ans: (i) $r^{2}-6 r+13=0$ has roots $r=3 \pm 2 i$.
(ii) General solution: $C_{1}(3+2 i)^{n}+C_{2}(3-2 i)^{n}$.
(iii) The ICs, $C_{1}+C_{2}=0$ and $C_{1}(3+2 i)+C_{2}(3-2 i)=4$, give $C_{1}=\frac{3}{2 i}$ and $C_{2}=\frac{-3}{2 i}$. Thus: $a_{n}=\frac{3}{2 i}(3+2 i)^{n}-\frac{3}{2 i}(3-2 i)^{n}$.
4. For the following nonhomogeneous recurrence relation with initial conditions find (i) the homogeneous solution $a_{n}^{(h)}$, (ii) a particular solution $a_{n}^{(p)}$, and (iii) the solution that satisfies the initial conditions.

$$
\begin{aligned}
& a_{n}-6 a_{n-1}+8 a_{n-2}=6, \quad n \geq 2, \\
& a_{0}=0 \text { and } a_{1}=0
\end{aligned}
$$

Ans: (i) The homogeneous solution is $a_{n}^{(h)}=C_{1} 2^{n}+C_{2} 4^{n}$.
(ii) A particular solution exists in the form $a_{n}^{(p)}=A$ for some constant A. The recurrence relation gives $A-6 A+8 A=6$, so $a_{n}^{(p)}=A=2$.
(iii) The general solution is therefore $C_{1} 2^{n}+C_{2} 4^{n}+2$. The ICs, $C_{1}+C_{2}+2=0$ and $2 C_{1}+4 C_{2}+2=0$, give $C_{1}=-3$ and $C_{2}=1$. Thus:

$$
a_{n}=(-3) 2^{n}+(1) 4^{n}+2
$$

5. For the following recurrence relation problem, find the generating function $F(x)$ for the sequence a_{n} without actually finding a_{n}.

$$
\begin{aligned}
& a_{n}-2 a_{n-1}-4 a_{n-2}=5, \quad n \geq 2 . \\
& a_{0}=2, \quad a_{1}=4
\end{aligned}
$$

Ans: Multiplying by x^{n} and summing gives

$$
\sum_{n=2}^{\infty} a_{n} x^{n}-2 \sum_{n=2}^{\infty} a_{n-1} x^{n}-4 \sum_{n=2}^{\infty} a_{n-2} x^{n}=5 \sum_{n=2}^{\infty} x^{n}
$$

This gives us

$$
F(x)-2-4 x-2 x(F(x)-2)-4 x^{2} F(x)=\frac{5 x^{2}}{1-x}
$$

or

$$
\left(1-2 x-4 x^{2}\right) F(x)=2+\frac{5 x^{2}}{1-x} \text { whence } F(x)=\frac{2+\frac{5 x^{2}}{1-x}}{1-2 x-4 x^{2}}
$$

6. Do the following for the given rings.
(a) The factorization of 3069 into primes is $3069=3^{2} \cdot 11 \cdot 31$. Find (i) the number of units and (ii) the number of proper zero divisors in the ring \mathbb{Z}_{3069}. Your final answers must be completely simplified.
Ans: Units: $\phi(3069)=3^{2} \cdot 11 \cdot 31\left(\frac{2}{3}\right)\left(\frac{10}{11}\right)\left(\frac{30}{31}\right)=1800$
Proper zero divisors: $3069-1800-1=1268$
(b) In the ring \mathbb{Z}_{2009} find $(100)^{-1}$. Your final answer must be an explicit element of \mathbb{Z}_{2009}. (Note: this is not the same ring as the one in part (a).)

Ans: The Euclidean algorithm gives:

$$
\left\{\begin{array} { r l }
{ 2 0 0 9 } & { = 2 0 (1 0 0) + 9 } \\
{ 1 0 0 } & { = 1 1 (9) + 1 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
n=20 k+r_{1} \\
k=11 r_{1}+r_{2}
\end{array}\right.\right.
$$

where $n=2009, k=100, r_{1}=9$, and $r_{2}=1$. Putting $r_{1}=n-20 k$ (from the top equation) into the bottom one gives
$k=11(n-20 k)+r_{2}=11 n-220 k+r_{2}$ and solving for $r_{2}: r_{2}=221 k-11 n$. If we put the values back in, this says $1=221 \cdot 100$ in the ring \mathbb{Z}_{2009}. Thus $(100)^{-1}=221$.

Math 3103 Combinatorics (Luecking)
NAME:
(Please print clearly)
Second Exam C (solutions)
March 27, 2024

1. For each of the following first-order recurrence relations, find the solution that satisfies the given initial condition.

$$
\text { (a) } \begin{aligned}
& a_{n}=8 a_{n-1}, \quad n \geq 1, \\
& a_{0} \\
&=3
\end{aligned}
$$

Ans: Geometric progression: $a_{n}=(3) 8^{n}$
(b) $a_{n}=a_{n-1}+9, \quad n \geq 1$, $a_{0}=4$.

Ans: Arithmetic progression: $a_{n}=4+9 n$
(c) $a_{n}=\left(n^{6}+1\right) a_{n-1}, \quad n \geq 1$,
$a_{0}=5$.
Ans: Successive multiplications: $a_{n}=5\left(1^{6}+1\right)\left(2^{6}+1\right) \cdots\left(n^{6}+1\right)$.
(d) $a_{n}=a_{n-1}+n^{2} 9^{n}, \quad n \geq 1$, $a_{0}=6$.

Ans: Successive additions: $a_{n}=6+\left(1^{2}\right) 9^{1}+\left(2^{2}\right) 9^{2}+\cdots+n^{2} 9^{n}$
2. For the following second-order recurrence relation, find (i) the characteristic equation and its roots, (ii) the general solution, and (iii) the solution that satisfies the initial conditions.

$$
\begin{aligned}
& a_{n}-8 a_{n-1}+16 a_{n-2}=0, \quad n \geq 2, \\
& a_{0}=1 \text { and } a_{1}=9,
\end{aligned}
$$

Ans: (i) $r^{2}-8 r+16=0$ has roots 4 and 4 (repeated root).
(ii) General solution: $C_{1} 4^{n}+C_{2} n 4^{n}$.
(iii) The ICs, $C_{1}=1$ and $4 C_{1}+4 C_{2}=9$, give $C_{1}=1$ and $C_{2}=5 / 4$. Thus:

$$
a_{n}=4^{n}+\frac{5}{4} n 4^{n}
$$

3. For the following second-order recurrence relation, find (i) the characteristic equation and its roots, (ii) the general solution, and (iii) the solution that satisfies the initial conditions.

$$
\begin{aligned}
& a_{n}-2 a_{n-1}+17 a_{n-2}=0, \quad n \geq 2, \\
& a_{0}=0 \text { and } a_{1}=6 .
\end{aligned}
$$

Ans: (i) $r^{2}-2 r+17=0$ has roots $r=1 \pm 4 i$.
(ii) General solution: $C_{1}(1+4 i)^{n}+C_{2}(1-4 i)^{n}$.
(iii) The ICs, $C_{1}+C_{2}=0$ and $C_{1}(1+4 i)+C_{2}(1-4 i)=6$, give $C_{1}=\frac{3}{4 i}$ and $C_{2}=\frac{-3}{4 i}$. Thus: $a_{n}=\frac{3}{4 i}(1+4 i)^{n}-\frac{3}{4 i}(1-4 i)^{n}$.
4. For the following nonhomogeneous recurrence relation with initial conditions find (i) the homogeneous solution $a_{n}^{(h)}$, (ii) a particular solution $a_{n}^{(p)}$, and (iii) the solution that satisfies the initial conditions.

$$
\begin{aligned}
& a_{n}-7 a_{n-1}+10 a_{n-2}=4, \quad n \geq 2, \\
& a_{0}=0 \quad \text { and } \quad a_{1}=0 .
\end{aligned}
$$

Ans: (i) The homogeneous solution is $a_{n}^{(h)}=C_{1} 2^{n}+C_{2} 5^{n}$.
(ii) A particular solution exists in the form $a_{n}^{(p)}=A$ for some constant A. The recurrence relation gives $A-7 A+10 A=4$, so $a_{n}^{(p)}=A=1$.
(iii) The general solution is therefore $C_{1} 2^{n}+C_{2} 5^{n}+1$. The ICs, $C_{1}+C_{2}+1=0$ and $2 C_{1}+5 C_{2}+1=0$, give $C_{1}=-4 / 3$ and $C_{2}=1 / 3$. Thus:

$$
a_{n}=(-4 / 3) 2^{n}+(1 / 3) 5^{n}+1
$$

5. For the following recurrence relation problem, find the generating function $F(x)$ for the sequence a_{n} without actually finding a_{n}.

$$
\begin{aligned}
& a_{n}-2 a_{n-1}-4 a_{n-2}=5, \quad n \geq 2 . \\
& a_{0}=3, \quad a_{1}=6
\end{aligned}
$$

Ans: Multiplying by x^{n} and summing gives

$$
\sum_{n=2}^{\infty} a_{n} x^{n}-2 \sum_{n=2}^{\infty} a_{n-1} x^{n}-4 \sum_{n=2}^{\infty} a_{n-2} x^{n}=5 \sum_{n=2}^{\infty} x^{n}
$$

This gives us

$$
F(x)-3-6 x-2 x(F(x)-3)-4 x^{2} F(x)=\frac{5 x^{2}}{1-x}
$$

or

$$
\left(1-2 x-4 x^{2}\right) F(x)=3+\frac{5 x^{2}}{1-x} \text { whence } F(x)=\frac{3+\frac{5 x^{2}}{1-x}}{1-2 x-4 x^{2}}
$$

6. Do the following for the given rings.
(a) The factorization of 2728 into primes is $2728=2^{3} \cdot 11 \cdot 31$. Find (i) the number of units and (ii) the number of proper zero divisors in the ring \mathbb{Z}_{2728}. Your final answers must be completely simplified.
Ans: Units: $\phi(2728)=2^{3} \cdot 11 \cdot 31\left(\frac{1}{2}\right)\left(\frac{10}{11}\right)\left(\frac{30}{31}\right)=1200$
Proper zero divisors: $2728-1200-1=1527$
(b) In the ring \mathbb{Z}_{2011} find $(100)^{-1}$. Your final answer must be an explicit element of \mathbb{Z}_{2011}. (Note: this is not the same ring as the one in part (a).)

Ans: The Euclidean algorithm gives:

$$
\left\{\begin{array} { r l }
{ 2 0 1 1 } & { = 2 0 (1 0 0) + 1 1 } \\
{ 1 0 0 } & { = 9 (1 1) + 1 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
n=20 k+r_{1} \\
k=9 r_{1}+r_{2}
\end{array}\right.\right.
$$

where $n=2011, k=100, r_{1}=11$, and $r_{2}=1$. Putting $r_{1}=n-20 k$ (from the top equation) into the bottom one gives
$k=9(n-20 k)+r_{2}=9 n-180 k+r_{2}$ and solving for $r_{2}: r_{2}=181 k-9 n$. If we put the values back in, this says $1=181 \cdot 100$ in the ring \mathbb{Z}_{2011}. Thus $(100)^{-1}=181$.

